Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 39 kayıt bulundu.

Bitki Fizyolojisi Bölüm 1

Fizyolojinin başlangıçı tohumun çimlenmesiyle başlar.Çünkü bitkilerin hayat devreleri spor ya da tohum faaliyetleriyle başlar.Çimlenme embriyodan ekolojik isteğe göre optimum koşullarda normal bitki yapılarını oluşturma yeteneğidir.Bir tohum gömleğinden radikula belirmesi çimlenmenin en önemli kısmıdır.Bu devrede sert koruyucunun engel olmaktan çıkarılması esnasında ise bir çok fizyolojik olayların başlamasıdır.Çünkü buradaki fizyolojik olayların sonucunda hücre bölünmeleri başlayıp tohumda büyüme dolayısıyla hacminde artma olacaktır.O halde radikula belirmesinden itibaren(çimlenmenin başlangıcı) henüz ayrıntısı bilinmeyen biyokimyasal(Fizyolojik) olaylar meydana gelmekle beraber bu olayların en önemlisi solunumun artmasıdır.Bu durumdan sonra çimlenmede 2. derecedeki metabolik aktivite enzim aktivitesinin artmasıdır.Burada faaliyet gösteren enzimlerin bir kısmı önceden tohumda vardır,bir kısmı da hücre tarafında sonra üretilmektedir.Bütün bunlar bize çimlenmeyle metabolik faaliyetlerin başladığı ve hücre için ihtiyacı olay her şeyi üretebildiği fikrini vermektedir.Örneğin çimlenme esnasında tohumda üretilen amilaz enzimi depo maddelerinin parçalanmasında önemlidir.Ayrıca RNA-az ve proteolitik enzimlerde çimlenme sırasında üretilen enzimlerdir.Tohum çimlendikten yaklaşık ½ saat sonra ,bu kez protein sentezinin aniden arttığı görülmektedir.Çünkü çimlenmeden yarım saat sonra mevcut hücrede polizomların sayısı aniden artar.Hücrenin bir iskeleti vardır ve hücrede bir bölgeden bir bölgeye geçiş kolay değildir.Hücrede proteinlere az ihtiyaç olduğu zamanlarda Ribozomda üretilen protein yeterliyken hücre tam inhibitörle karşılaştığında bu yeterli olmamaktadır. Çünkü hücredeki bu zehrin dışarı atılması için daha enzime ve proteine ihtiyaç olduğundan ve bunu da ribozomda üretilen protein yeterli olmadığından dolayı polizomlardaki protein üretimi aniden artar. Mevcut enzimler ve bunların aktivitelerindeki artış su alıp turgorunu artıran ve buradaki reaksiyonların endosperme doğru hareketlerini de beraberinde getirir. Endospermdeki besinler parçalanıp eritilerek embriyonun beslenmesi için aktive edilir. Bir tohumun hem çimlenmeden önce hem de çimlendikten sonra biyolojik polimerler tarafından deneye tabii tutulursa çimlendikten sonra bunların atıldığı görülür.Söz konusu azalma çimlenmenin ilk evrelerinde maksimumdur (Bölünme o devrede fazla olduğu için). Tohumda fizyolojik faaliyetlerin gerçek anlamda başlayıp normal bir çimlenme olması iki faktöre bağlıdır.Bunlar: • İç Faktörler: 1. İç faktörün asıl özelliği tohumun biyolojik yapısı ve ekolojik isteği tarafıdan tayin edilir.Bundan sonraki endospermdeki enzim ve hormonların bozulmamış olması,patikte buna tohumların canlılığını sürdürmesi denir.Bu durumda tohum dormansi durumundadır. 2. Tohumları olgunlaşmış olması 3. Embriyonun yaralanmamış ya da zedelenmemiş olması. 4. Tohum parazitleri ve zararlıları tarafında yaralanmamış olması. 5. Büyüme ve gelişme esnasında oluşacak tohum kabuğunun endospermi koruyacak şekilde güçlü çimlenmeye engel olacak şekilde bir yapı göstermesi gerekir. • Dış faktörler: Dış faktörler tohumun çimlenmesinde iç nedenlere oranla çok daha etkili ve yaygındır.Bu da habitat ve nişin ekolojik koşullarını kapsar.Bunlardan en önemlisi de tohumun çevresinde yeterli nem kullanabilir ve oksijene ulaşması gereklidir.Yukarıdaki faktörler optimum koşullarda olmazsa tohum tohuma geçemez. İç faktörler bazen genel olarak çimlenme için dış faktörler yeterli olsa da uygun olmuyor. Aynı durum bitkilerin diğer organlarında da görülebilir.Ama esasen dış koşullar dikkate alınmadan iç faktörler gelişmeye engel olabilmektedir.O yüzden çevre koşullarının uygun dönemi başlamasına rağmen bir çok tohum çimlenmeye geçmiyor.Bu olaya çimlenme durgunluğu anlamındaki dormansi denir. Tohumda çimlenmenin olmaması her zaman dormansi değildir.Çünkü çimlenme sırasındaki büyüme ve gelişme döneminde çeşitli nedenlerle gerileme olabilir.Dormanisinin doğal ve kültür bitkilerinde spesifik durumları vardır. Doğal bitkilerde yukarıda açıklanan içsel nedenlerle,kültür bitkilerinde ise tohumun derinde kalması,çeşitli engelleyiciler,kimyasal ilaçlar vs. çimlenmeyi engelleyebilir.O yüzden tohum ya da başka bir bitki organındaki pasifliği dormansi olarak nitelendiremeyiz. Çevre koşullarının etkisiyle bir bitki organının gelişmesindeki gecikme daha çok dinlenme hali bu sözcük ile ifade edilir. Sonuç olarak bitkilerdeki her dinlenme dormansi değil,ancak her dormansi bir dinlenmedir.Dormanside yukarıdaki iç nedenlere ilaveten tohum kabuğunun su ve gazlara karşı geçirimsiz olması kabuğun mekanik olarak embriyonun gelişimini engellemesi ve bazı doğal inhibitörlere sahip olmasıdır.Dış etkenlerden çimlenmede rol oynayanlar nem ve suyun etkisi olup bitki dünyası bu bakımdan iki guruba ayrılır.Bunlardan bir grubunun çimlenmesi için toprak nemi yeterlidir.Oysa aynı olay için diğer gruba aktif su gereklidir.Halbuki habitatta her ne kadar toprak suyu ve nem birbirinin tamamlayıcısı ise de hem aktif suyun minimum miktarının azalmasıdır. 1)Su ve Nemin Etkisi:Çoğu bitki tohumunun çimlenmesi için yeteri kadar su gerekmektedir.Ancak bazı tohumlar toprağın su kapasitesi %50 bazılarında %75 olduğunda çimlenir.Tohumları çimlenmesi için niş suyunu %50-75 olmalıdır.Buna rağmen tüm tohumlar tarla kapasitesinde su absorbe edebilirler.buna göre tohumların çimlenme suyunun tarla kapasitesi olduğu söylenir.Kuru topraktaki tohumların suyu emme kuvveti ne kadar fazla olursa olsun aldıkları su şişmelerine yeterli olsa bile ancak kısmen çimlenme sağlanır. Görülüyor ki ortamın osmotik basıncı ile çimlenme şansı paralellik gösterir.Tohumlara sağlanan fazla ve sürekli su çimlenmeyi hızlandırır.Ancak kademeli olmayan sürekli artış sınırlayıcıdır.Genel olarak havada %90 nem olduğunda tohum sadece bundan 2 gün faydalanabilir.Tohumun aktif suyla ıslanması 1-1.5 gündür.Uzayan süre ket vurucu olabilir.Burada tohumun emdiği su enzim faaliyetleri için ortam sağladığı gibi çözünen protein,yağ vs. besin maddelerini embriyonun büyüme noktalarına taşınmasını sağlar. Tohumdaki su alımı kabuktaki hidratasyon suyunda biraz yükselmiş atmosferden alınır. 2)Sıcaklığın Etkisi: Sıcaklığın çimlenmeye özel etkisi tam anlaşılamamasına rağmen su varlığında reaksiyonların başlaması ve hızına,suyun absorbsiyonuna ve tohumun oksijen alımına önemli etkileri olduğu kesindir.Bitkilerde türler arasında olduğu gibi aynı türün diğer bireyleri arasında görülen sıcaklık farkı isteği(niş durumunda) tohumlardan ziyade olgunluk çağında daha kolay belirlenmiş bitki yaşı ile depolama şartlarına bağlanmıştır.Oysa bitkilerin tohumdan tohuma kadar habitatta eko-fizyolojik koşullarda yaşar.Aynı türün bireyleri farklı sıcaklıklardaki habitatlarda yaşabiliyorsa bu onların ekolojik koşullara karşı toleransın sonucudur.Çünkü daima ekolojik koşullar optimum koşullar için gösterilir.Genel olarak serin iklim bitkileri sıcak iklim bitkilerinde daha düşük sıcaklıkta çimlenir.Bu nedenle kozmopolit bitkiler dünyanın %50’sinde yaygındır. Bitkilerin tohum çimlenme anındaki sıcaklık isteğini karmaşık hale getiren yetişme dönemidir.Örneğin,Colchium,Crocus,Muscari,Gagea vs. gibi bitkiler kar tabakası çözündüğü an;Phlomis,Cardus,Carthamus vs.sıcaklık 14-25oC’ye arttığında;Cyclamen,Muscari ve Gagea bazı türleride 8-14oC’de çimlenir.Bu gruplardan ilki ilkbahar geofiti,ikincisi yaz geofitleri, üçüncüsü ise sonbahar geofitleri denir.Genel olarak bir çok serin iklim bitkisi 20oC,sıcak iklim bitkileri35oC’de çimlenir.Bu iki durumdan meydana gelen sapmalar.gece-gündüz arasındaki sıcaklığı farkı çimlenmeye teşvik etmesinden kaynaklanır. 3)Işığın Etkisi:Bilhassa doğal bitkiler çimlenmede ışık gereksinimi bakımından ışığı seven,ışığa ihtiyat duyan ve fazla ışıktan zarar gören şekline üçe ayrılır.Bilhassa tohumda ışığa karşı davranış embriyo sitoplazmasındaki bir foto-kimyasal sistemin fitokrom denen bir pigmenti üretmesinden anlaşılır.Fitokrom pigmenti fotoreversibl(Dönüşebilen ışıkları emebilen) olduğu için çimlenmede iş yapan eko-fizyolojik olayların ışıkta ya da karanlıkta olduğuna karar veren metabolik kontrol düğmesidir.Örneğin fitokrom kendisi ışıkta çimlenen karanlıkta çimlenmeyen tohumlar için özellikle kırmızı ışığı emerken,bunun tersinde ışık emilimini engeller.Dolayısıyla bu metabolik anahtar alınacak ışığın miktarını ayarladığı için bitki dünyasında çok ışık kullanan(uzun gün bitkileri),az ışık kullanan(kısa gün bitkileri) ve sadece difüz ışık kullanan(gölge bitkileri)şeklinde üçe ayrılır.Çimlenmede etkin olan en önemli faktör ise vernalizasyon olayıdır.Deneysel çalışmalar çimlenmenin sadece ışıkla değil düşük sıcaklık periyodu ile ilgili olduğu görülmektedir.Çünkü bu olayla oluşan uyartı sadece soğuk periyotlarda oluşmuştur.Uyarıya neden olan faktörler ise soğuk ve ışığın etkisiyle üretilen ve özel uyarıcı görev yapan vernalin hormonudur.Bu olayın anlamı ilk baharlaştırma ya da düşük sıcaklıkta akımın(indüksiyon) hızlandırılması anlamına gelir. Bitkilerde vernalizasyonun en açık görüldüğü yer vejetasyon konileri ve tohumlardır. Vernalin hormonu hem tohumlarda oluşup embriyo sitoplazmasının metabolizmasında rol oynar hem de vejetasyon konisinden alınan uyartının diğer kısımlara aktarılmasında rol oynar. Olay her bitkide az çok belli bir indüksiyon ısısıyla bu ısının belli bir etkinlik süresi (vernalizasyon süresi)vardır ve türe göre değişir.Buna göre deneyler bitkileri vernalizasyon açısından da obligat ve fakültatif şeklinde ikiye ayrılmıştır.Obligatlar uzun gün bitkileri olup soğuk periyot şarttır.Diğerlerinde çimlenmeyi hızlandırmasına karşın eksikliliğinde de çiçeklenme olabilir.Ancak tohumların tohuma geçmesi garanti değildir. Deneyler tohum halde vernalize edilen türlerin soğuk periyot ihtiyacını fakültatif,fide ve sonraki dönemlerde vernalize edilenlerin ise obligat olması gerektiğini ortaya koymuştur. Örneğin çevremizde gördüğümüz buğdaylar ekimde tarlaya atılır.Su periyodu gelinceye kadar fide olur.Soğuk periyodu öyle geçirir. 4)Oksijenin Etkisi:Çimlenmede tohumdaki besin maddelerinin oksidasyonu içi oksijen gerekmektedir.Çünkü bu katabolik olayla açığa çıkacak enerji embriyonun hayatını sürdürecek en önemli kaynaktır.Burada hücre büyüdükçe embriyo büyür ve oksijen ihtiyacı artar.Çoğu tohumlar kuru iken geçirimsizdir.Fasulye ve bezelye tohumları bu konuda gaddardır.Tohumlar su geçirmeye başladığı zaman oksijen girişi de başlar.Fakat tohumdaki hidratasyon suyu çimlenmeye ket vurucu yöndedir. O halde çimlenmenin gerçekleşmesinde tohumun en az %20 oksijen temas halinde olması gerekir.Doğal bitki tohumları derinlere gömüldüğünde ve oksijen almadığı sürece çimlenmez,fakat hayatta kalırlar.Ekosistemin dengesi için son derece önemli olan tohumlar her durunda sisteme en önemli katkıyı yapmaktadır.Ancak işleme karıştırma,erozyon ya da başka bir yolla toprak yüzeyine yaklaşmada çimlenir.O halde çimlenmede nişin durumu çok önemlidir(tohum yatağı).Nişte nem artınca nem azaldığında bu ikisini birlikte kapsayan topraklar iyidir.Sonuçta yukarıda belirtilen faktörlerin bir arada bulunması halinde nişteki tohumun hava almasıyla kuru ağırlığı %60-100 artarak çimlenir.Olayda en önemli rolü şişme göstermiştir.Yani su metabolizmasıyla ilgili olan olaylar tamamlanmıştır(difüzyon,osmoz). Sonra tohumda depolanmış ilk şekerler suda erir,nişasta ise diastaz enziminin etkisiyle su alarak maltoza dönüşür.Buradaki maltozda maltaz enziminin etkisiyle glikoza çevrilir.böylece glikoz difüzyon-osmoz kuvvetleriyle hücreden hücreye geçerek yeni uyanmaya başlayan fideciğe ulaşır ve orada ilk etapta selüloz ve nişasta gibi maddeleri teşkil eder.Proteinler ise başka enzimlerle aminoasitler ve amidlere parçalanarak fidecik büyümesinde değişik şekilde kombine olarak farklı proteinlerin yapımı için kullanılır.Özellikle yağlı tohumlardaki yağlarda lipaz enzimiyle yağ asitleri ve gliserine parçalanır. Bunlara da çeşitli kimyasal değişikliklerle şeker yağların yapımında kullanılır. Çimlenmedeki fizyolojik faaliyetler ve büyümede kullanılan enerji,solunuma alınan oksijen vasıtasıyla karbonun Karbondioksite,H’nin su haline gelmesiyle(biyolojik oksidasyon) saptanır.Bu nedenle çimlenme halindeki bir tohumda solunum,kuru haline göre yüzlerce kat fazladır.Örneğin 1kg buğday çimlenirken 1 m3 havanın içerdiği oksijenin yarısını kullanır.Böylece solunumla oksijen devreye girince başlayan büyüme ve gelişme olaylarında diğer elementlerde ihtiyaç haline gelir.Tohum,kökleriyle aktif su alımına geçmeden önce ihtiyaç duyduğu en önemli elementler nitratlardır.Çünkü nitratlar tohum fide haline geldiğinde yaprağı oluştururken yapacağı fotosentez olayını düzenlemek için ışığa karşı istek ve hatta tohumdaki çimlenmeyi artırırken vejetatif metabolizmayı da artırmaktadır.Çimlenmede nitratlar sınırlayıcıdır.Çimlenme bittikten sonra büyüme ve gelişme olaylarını 3 temel gruba toplamak mümkündür: 1. Metabolik olaylar fizyolojisi 2. Büyüme ve gelişme fizyolojisi 3. Hareket fizyolojisi O halde madde değişimi olan metabolizmayı metabolizma fizyolojisi diğerlerini ise 2 ve 3. maddeler inceler. 1)Metabolizma Fizyolojisi:Burada bitki hücreleri ve dokuları fiziksel ve kimyasal değişiklerle yönlenir.Su,gaz ve eriyiklerin bitkilerce nasıl alındığını ;bunların bitkilerde hücreler dokular ve organlar arasında nasıl taşındığını;besin ve kompleks bileşiklerin (hormonlar)nasıl sentezlendiğini;büyüme ve gelişme olaylarında ihtiyaç enerjisinin sentezlenen bileşiklerden nasıl sağlandığını;yeni dokuların nasıl yapıldığını ve vejetatif bazı dönemlerinde üreme organlarının teşekkülüne ne zaman başladığını araştıran bir fizyoloji koludur.Bu temel olaylar iki yönde ele alınır: a) AnabolizmaSentez ya da asimilasyon olaylarını gerçekleştiren bu devre bitkilerin değişik yollarla ortamdan aldıkları ham besin maddelerini bünyelerinde yararlı bileşikler yapımı olayıdır.Yani metabolizmanın yapıcı kısmıdır. b) KatabolizmaParçalanma olayları olup bitki biyolojik dinanizmde gerekli enzimce zengin bileşiklerin kullanılması için bileşiklerin parçalanması olayıdır.Yani metabolizmanın yıkıcı kısmıdır. Metabolizma fizyolojisinde en önemli unsur bitkileri oluşturan elementlerdir ve ayrıntılı incelenmeleri gerekmez.İlkel analizle elde edilen sonuçlar metabolik olaylar hakkında zaten yeterli bilgi veriyor.Tüm canlı hücrelerinde olduğu gibi bitki hücrelerinde de su maksimum düzeyde bulunur.Alınan suyun çoğu atmosfere verilir.Bir bölümü dokularda su olarak kalır ve diğer kısmı da değişik bileşikler yapmakta kullanılır.Bitki nişinde suyun az ya da aşırı bulunması gelişimi diğer faktörlere oranla daha fazla etkiler.Su azlığında yeterli turgor sağlanmaz.Hücrelerin büyüyüp gelişmesinde turgor basıncıyla meydana gelen reaksiyonlar sonucu sağlana enerjiye bağlı olduğu için biyolojik dinanizm(BD) minimuma iner.Yine bitkilerde su azlığında yaşlı organlardan gençlere su nakli yapılarak bu ekstrem koşulun önüne geçilir.Su noksanlığında bitkinin ilk kontrolü stomalara müdahale etmektir.Su fazlalığında akuatik bitkiler hariç diğerlerinin gelişimini olumsuz etkiler.örneğin nişte biriken su toksik etkisi yapan maddeleri artırır,solunum için gerekli oksijeni azaltır.Daha da önemlisi bitki topraktan nitratları alamaz.Böylece kök gelişmesi azalır.Bu da genel metabolizma düşüşüne neden olduğundan kök gelişmesi nedeniyle verim düşer.Bitki gevşek yapılı olur ve direnç azalır.Bitkideki su miktarı türe,aynı türün farklı organlarına ,aynı organların günün değişik zamanlarındaki durumuna ve mevsimlere,bitkinin yaşına,toprağın tarla kapasitesine, absorbsiyon transporasyon miktarlarına ve toprağın mineral zenginliğine göre daima değişkendir.Bir çam tohumuyla yapılan deneyde tohum çimlenmeden önce %7 su içerirken, çimlenme esnasında bu miktar %172 artar.Meritemlerde %90 su içeren kök ve yumrularda daha az su bulunur.Bitkilerdeki su kapasitesinin en değişken dönemi günün farklı saatleri ve mevsimleridir.Bu durum tamamen kuru madde artışı ve kuru madde işgalinden dolayı su miktarı azalmasından kaynaklanır.Ama özel olarak günü farklı saatlerindeki değişme ise suyun absorbsiyonu ile transporasyonu ile alakalıdır.Güneşli günlerde sabah erkenden öğlene doğru transporasyonda da artış olur.Bu olayın temelinde sabahın erken saatlerinde bitkinin suyu taşıma güçlülüğü vardır.Yani absorbsiyon yetersizdir

http://www.biyologlar.com/bitki-fizyolojisi-bolum-1

BİTKİ ANATOMİSİ ÇALIŞMA NOTLARI

1-Çimlenmekte olan bitkinin besin gereksinimi kotiledonlarda yada özel dokularda depolanan besinlerden sağlanır. 2-Kök ve gövdenin büyümesi büyüme noktalarındaki meristamatik dokuların yeni hücrelerin oluşması ve büyüme ve farklılaşması ile olur. 3-Yapraksız ve köksüz yapraksı yapıya tallus denir.Bu tür bitkilere detallafita gurubu denir. 4-Tohumlu bir bitki dallanmış eksen içeren bir yapı gösterirse yaprak kök ve gövdeden oluşan yapıya kormus denir.Bu tür bitkiler kormofita gurubuna girer. 5- Kök ve gövdenin oluşturduğu başlangıç büyüme genel olarak pirimer büyüme ,bu tip büyüme ile oluşan bitki yapısınada pirimer bitki yapısı denir. 6-Vaskular kambiyum dışa doğru sekonder fulemi içe doğru sekonder ksilemi oluşturarak kök ve gövdenin çapının artmasına neden olur.Buna ek olarak mantar kambiyumu da fellogen de genişleyerek eksenin çevresel bölgesinde gelişir ve peridermi oluşturur. 7-kök ve gövdeyi oluşturan yapılar dıştan içe doğru epidermis,korteks,iletim demetleri ve öz dür. 8-Sekonder çeperde bulunan lignin,süberin,tanen,organik tuz ve diğer maddelerin yapıya katılması hücreye sertlik verir. 9-çeper maddesi üst üste tabakalar halinde birikir buna aposisyon büyüme denir.Bu büyüme iki şekilde olur biri dıştan hücre lümenine doğru sentripetel diğeri lümenden uzaklaşacak yönde sentrifugal şeklinde olur. 10-Çeperin yüzeysel büyümesinde mikro fibriller birbirinden ayrılır ve oraya yeni maddeler girer bu büyüme ıntususepsıyon denir.Bu tip büyüme sırasında çeperin gevşeyip yeni maddelerin katılaşması oksin,turgor basıncı,proteın sentezi ve solunum işbirliği ile düzenlenmekte ve hücre protoplastının etkinliği ile yakından ilgilidir. 11-Basit geçit parankima,kenarlı geçit trakeit ve yarı kenarlı geçit ise trake ve parankima arasında bulunur. 12-Kenarlı geçitlerde geçit zarının orta kısmında kökeni primer olan kalınlaşma olur buna torus denir.Torusun etrafındaki ince kalan bölgeye margo denir. 13-İkiden fazla hücrenin bağlandığı köşelerde başlayan boşluk diğer çeper kısımlarına kadar yayılır bu hücre arası boşluk tipine şizogen boşluk denir. 14-Kimi hücre arası boşluk sisteminde bir veya daha fazla hücrenin grup halinde erimesi ile oluşur bu tip boşluklara lisigen boşluk denir. 15-Şizogen ve lisigen boşlukların bir arada bulunmasına şizo-lisigen boşluk denir. 16-Bitkileri hayvanlardan ayıran özellik meristemlerinin olmasıdır. 17-Aynı görevi üstlenmek için bir araya gelmiş hücre topluluğuna doku denir. 18-Kök,gövde ve bunların uç kısımlarında bulunan meristem apikal (uç) meristemdir. 19-Monokotillerin internodyumlarının alt kısmında ve yaprak kılıflarında görülen meristem interkalar (ara) meristemdir. 20-Bulunduğu organın ana eksenine paralel seyreden meristem lateral (enine,yanal) meristemdir. 21-Meristemlerin özellikleri:plazmaları yoğun,boyutları ve vakulleri küçük,ergastik madde yok,nükleusları büyük,protein sentezi yoğun,çeperleri incedir. 22-Apikal hücre kuramı Nageli 1878 tarafından ortaya atıldı. Bu kuram ilkel yapılı bitkiler için kullanılır. 23-Histogen kuram Hanstein tarafından ortaya atıldı.Bu kuram tohumlu bitkilerinbüyüme noktalarının açıklanmasında kullanılır. 24-Tunika korpus kuramı Schmldt in tarafından ortaya atıldı.Bu kuram yapraklı sürgünlere uygulanır 25-Histogen kuramdan vazgeçilip tunika-korpus kuramı uygulanmasının sebebi: -periblem ile ploron arasında geçiş zonu belli değil -değişik insiyallerden oluşan olgun dokuların önceden belirlenmemiş olması 26-Vaskular kriptogomlarda çevrelerindeki hücrelerden kolayca ayırt edilebilen bir veya birkaç hücre vardır.Şayet tek hücre varsa tepe hücresi,birden çok hücre varsa tepe insiali denir 27-Gymmosperlerde tepe meristemi hücre guruplarına göre bölünme ihtiva eder.En dışta antiklinal ve periklinal yönde bölünme vardır 28-Gymnosperlerde 3 tür gruba ayrılır:Cycas,Ginko veCrypto,Meria-Abies tipi olmak üzere 29-Cycas tipi gymnosperm 3 tabakadan oluşur.Yüzey meristemi epidermisi oluşturur.Rib meristem öz bölgesini oluşturur,çevresel meristem korteks,kombiyum ve yan tomurcukları oluşturur 30-Ginko tipi meristemin cycas tipi meristemin özelliklerinden başka kombiyum benzeri geçit zonu vardır 31-Cryptomerin-Abres tipinde kambiyum benzeri geçit zonu yoktur 32-Angiospermlerde opuntia ve normal angiosperm tip olmak üzere iki tiptir. 33-Opuntia tipinde yüzey meristemi yerine tunika vardır.Zip çevresel meristem vardır.Kambiyum benzeri geçit zonu vardır 34-Normal angiosperm tipinde kambiyum benzeri geçit zonu yok 35-Gymnosperlerde kök iki tabakadan oluşur.Tunika-korpus Angiospermlerde kök ucu 3 tabakadan oluşur: Dermotojen,periklem ,ploron.Monokotillerde kök ucu 4 tabakadan oluşur:Dermotogen,periklem,ploron ve kaliptra. 36-Bitkinin sürgün ucundan kök ucuna kadar uzanan dokuya parankima dokusu denir. 37-Parankima çeşitleri Asimilasyon,depo ,su deposu,iletken doku ve havalandırma parankimalarıdır. 38-Hücre çeperi mantarlaşmamış örtü dokular Epidermis, stoma ,tüyler ve su savaklarıdır. 39-Epidermisin görevi: -Desteklik sağlar -Terleme yapar -Mekanik koruma sağlar -Su ve kimyasal madde depo eder -hücrede buruşmuş kısımları yeşertir 40-Gölgede ,suda yetişan bitkilerde ve eğrelti otlarında epidermis bulunmaz. 41-Stomalarda üretilen şeker stomanın su emme kuvvetini arttırır ve komşu hücrelerden bekçi hücrelere su girişi olur ve stoma açılır 42-Akşam stomalardaki şeker nişastaya çevrilir ve stomanın emme kuvveti azalır.Bekçi hücrelerinden komşu hücrelere su ve nişasta çıkar stoma kapanır. 43-Stoma orabanche bitkisinde inaktif halde bulunur.Kökte klorofilsiz ,bazı kara bitkilerinde ve parazitik bitkilerde stoma bulşunmaz. 44-Tüy çeşitleri korunma,savunma,tırmanma,emme,salgı ve emergenslerdir. 45-Kök tüyünü oluşturan epidermis hücrelerine trikoblast denir. 46-Sekonder kalınlaşmayla kök ve gövdede epidermisin yerini alan sekonder orjini koruyucu doku peridermdir. 47-periderm fellem,fellogen ve fellodermden oluşur. 48-periderm de gaz alış-verişini sağlayan yapılara lentisel denir. 49-Bitkinin bir yerine dış tesirle bir yaralanma olduğunda yaralanıp ölmekte olanhücreler,saldıkları hormonlarla civarındaki sağlamhücrelere bölünme kabiliyeti kazandırırlar bu olaya yara mantarı veya yara kambiumu denir. 50-Epidermiste bulunan stomanın altına isabet eden bölgede mantar doku teşekkül edecekken yerine seliloz çeperli parankima hücreleri oluşur bu dokuya komplimenter denir. 51-Destek doku sklerankima ve kollenkima hücrelerinden oluşur. 52-Sklerankima lifler ve taş hücrelerine ayrılır. 53-Lifler meristematik hücrelerden taş hücreleri parankimatik hücrelerinin olgunlaşmasıyla oluşur. 54-Sklerankima yaprağın dik durmasını ve kök kıvrılma yaptığında kırılmamasını sağlar. 55-Sklerankima ve kollenkima dokularının ikisine birden sferom denir. 56-İçeriği büyüklüğü ve şekilleri farklı olan hücrelere idioblast hücreler denir. 57-Dikotiledonlarda sklerankima lifleri yumuşaktır monokotiledonlarda serttir. 58-Kollenkima hücreleri köşe,levha,boşluk ve annular kollenkima diye ayrılır. 59-Monokotıledonlarda kollenkima bulunmaz bunlarda sklerankıma vardır. 60-Kollenkima hücreleri büyümekte olan genç bitkilerin gövde ,yaprak,köklerinde ,çiçek organlarında ve meyvalarında bulunur. 61-Köşe kollenkimasında kalınlaşma köşelerde olur Levha kollenkimasında kalınlaşma bir kenardadır (alt-üst) Boşluk kollenkimasında kalınlaşma hücre arasıboşluğa bakan kenardadır Annular kollenkimasında kalınlaşma hücre lümeni bir daire yapısındadır. 62-İletim doku elamanları floem ve ksılemdir. 63-Ksılem elamanları trake,trakeıd,ksılem sklerankıması ve ksılem parankımasıdır. 64-Floem elamanları eleklı boru hücreleri,arkadaş hücreleri,floem sklerankıması ve floem parankımasıdır. 65-Kökte oluşan ksılemlerden ilk oluşan protoksılemdir.Bunun üzerine daha sonra oluşana meta ksılem denir. 66-Ksilemin görevi:köklerden aldığı su ve mineralleri gövde ve yaprağa iletmektir. 67-Floemin görevi:yaprakta oluşan organik maddeleri diğer organlara iletmektir. 68-Ksilem elamanlarından trake,trakeıd ve ksilem ksilem sklerankiması desteklik verir.Ksilem parankiması depo görevi görür. 69-Trake üst üste gelmiş aradaki bölme zarları erimiş bir çok hücrelerden gelişmiş,geniş ve açık borulardır.Bunda perferasyon tablası iletimi sağlar. 70-Trakenin çeper sonlarında bazende yalnız bir tarafta bir yada birkaç delik içerirler.Delik taşıyan hücre çeper kımına perfarasyon tablası denir. 71-Vaskular farklılaşmanın başlangıcında oluşan dokuya protoksılem denir.Bu dokudan oluşan doku ise metaksilemdir. 72-Gymnospermlerde sadece trakeid bulunmasının sebebi ilkel yapıda olmasıdır. 73-Öz kolunu görevi öz bölgesi ile korteks arasında iletimi sağlamaktır. 74-Çeperlerin yırtılması sonucu parankima hücrelerinin içe doğru girmelerine tilosis denir. 75-Primer floem prokambiyumdan oluşur.Sekonder floem kamiyum üretir. 76-Eğrelti otu ve gymnospermlerde arkadaş hücreleri yoktur.Bunun yerine protein yapısında albuminli hücreler bulunur. 77-Salgı maddelerinin dışarı atılmaması sekresyon dışarı atılmasına ekresyon denir. 78-Dış salgı sistemi hidatot,nektaryumlar,enzim bezleri ve ozmoforlardır. 79-Gutasyon suyun sıvı şekilde hidatottan atılması olayıdır. Nektaryum şekerli öz suyu salıp böcekleri kendine çeker tozlaşmayı sağlar Osmofor bitkilerin koku yaymasını sağlar ,bitkiye çekicilik verir, tozlaşmayı sağlar Enzim bezi böcek kapan bitkilerde sindirimi sağlar 80-Lateks denilen beyaz veya sarımsı renkte oldukça viskos bir sıvı içeren hücre veya birleşmiş hücre serilerine latisifer denir. 81-Protoderm ,epidermisi oluşturur. 82-Temel meristem,öz,öz ışını,korteks’i oluşturur. 83-Kütinizasyon,epidermis hücrelerinin üst çeperine kütin katılması olayıdır.(seluloz+kutın=kutinizasyon) 84-Antogenetik,embriyodan itibaren olan değişim. 85-Filogenetik,eski atadan bugüne kadar olan değişim. 86-İdioblast,bulunduğu dukudaki hücrelerden şekil,içerik ve büyüklük bakımından farklı hücrelere denir. 87-Anostomoz,ağız ağıza yada uç uça gelen hücrelerin çeperlerinin erimesiyle oluşan boşluklar. 88-Kallus,callose denen d-glukozdan yapılmışbir polisakkarit olup iletimi düzenler. 89-Fillatabi,yaprakların gövde üzerinde diziliş tarzını inceleyen bilim dalı. 90-Merkezi silindir,korteksin son tabakası olan endodermisin altında merkeze kadar olan kısım. 91-Perisikl,merkezi silindirin en son dış tabakasını oluşturan tek sıralı hücrelerden oluşmuş yapı. 92-Hadrosentrik,içte ksılem ve dışta halka şeklinde floem olan iletim demeti şekli. 93-Leptosentrik,içte floem dışta ksilem bulunan iletim demeti şekli. 94-Özışınlar,merkezi silindirdeki iletim demetleri arasındaki boşlukları dolduran parankimatik kısımlara denir. 95-Radikula,embriyonun kökü oluşturacak kısmı. 96-Plumula,embriyonun gövdeyi oluşturacak kısmı. 97-Fragmoplast,orta lamel gelişimine bölündükten sonra başlar,başlangıçta ipliksi oluşumlar halindedir.Buna “fragmoplast” denir. 98-Plastite,hücrenin şekil ve boyutuyla değişikliğe uğrayarak zamanla biçimsizleşip farklı şekillerde kalarak hacminin sürekli olarak artması. 99-Elastite,biçimsizleşmeden sonra hücrenin özgül şekil ve boyutuna geri dönmesi. 100-Tilosis,çevrelerindeki parankima hücreleri tarafından trakelerin kapatılması olayına denir. 101-Adventif kök,canlı parankima hücrelerinin bölünmesiyle oluşan köke denir. 102-Trikoblast,kök epidermisinde emici tüy yapıcı epidermis hücrelerine denir. 103-Velamen,monokotiledonlarda çok tabakalı epidermise denir. 104-Caspari şeridi,genç köklerde endodermis hücrelerinin yanal ve ışınsal çeperlerinde ince şerit halinde kalınlaşmalar görülür.Buna”caspari şeridi” denir. 105-Diark,kökte görülen 2 kısılem kollu ışınsal iletim demetine denir. 106-Mikoliza,bitki köklerinin özel mantarlarla oluşturduğu simbiyotik birliğe denir. 107-Kotiledonlar(ilk yapraklar) tohumda ilk gelişen yapraklardır.B esin depo ederler. 108-Bifasiyel yaprak,belirgin bir palizat ve sünger parankiması ayırt edilen yapraklara denir. 109-Unifasiyel yaprak, belirgin bir palizat ve sünger parankiması ayırt edilemeyen yapraklara denir. 110-Demet kını,bazı bitkilerde iletim demetinin etrafında özel kloraplastlı nişasta depo eden bir sıralı hücre topluluğuna denir. 111-Hovstoryum,parazit bitkilerin konak canlıya saldıkları köklere verilen isim. 112-Yan köklerin orjini perisikl , tüylerin orjini epidermistir. 113-Kökten gövdeye geçiş bölgesine “chipolotil” denir. 114-Trakelerde yaralanan yerlere trakenin içine girerek kapatan yapıya “flosis” denir. 115-Çöl bitkilerinin yapraklarında nektaryum bulunur. 116-Hücre çeperinde meydana gelen mantarlaşma süberinleşme sonucudur. 117-Dermotojen deri dokularını veren tabaka 118-Sekonder kalınlaşma ve odun oluşumu gymnospermlerde ve dikotillerde görülür.Monokotıllerde normal kalınlaşma görülmez. 119-Trake hücreleri ölüdür ve liglinleşmiş çeperlidir. 120-Kalburlu borular canlı hücrelerdir ve çeperleri hiçbir zaman liglinleşmez. 121-Epidermal hücreler dışa doğru çıkıntılar yaparak tüyleri meydana getirirler. 122-Tüyler 4’e ayrılır a-koruma tüyleri:bitkiyi dış etkenlere karşı korur ayrıca güneşten gelen zararlı ışınları yansıtır. b-emme tüyleri:bunlar kökte bulunur ve topraktaki maddeleri bitkiye alır. c-tutunma tüyleri:bitkiyi yerden yukarlara çıkarmaya yarar. d-salgı tüyleri:bu tüyler eterik yağlar salgılarlar. 123-Periderm hücre çeperi mantarlaşmış örtü dokudur.Su kaybını önler, ısı kaybını önler, patojenleri uzaklaştırır. 124-Fellogen üste doğru fellemi aşağı doğru fellodermi oluşturur. 125-Genç hücrelerde turgor desteklik sağlar. 126-Kollenkima hücreleri canlıdır, Sklerankima hücreleri ölüdür. Kollenkima hücreleri suludur, Sklerankima hücreleri susuzdur. Kollenkima hücrelerinde kloroplast var, Sklerankima hücrelerinde yoktur. 127-Bitki hücrelerinin hayvan hücrelerinden farkı seliloz çeper olmasıdır. 128-Sekonder çeperde meydana gelen odacıklara geçit denir. 129-Basit geçitler taş hücreleri ve parankimada bulunur. 130-Kenarlı geçitler trakeitlerde bulunur. 131-Yarı kenarlı geçitler trake ile parankima arasında bulunur. 132-Plasmodesma ve geçitler hücre arası madde alış-verişini sağlarlar. 133-Süt borularının görevi:su tutma kapastesine sahiptir,minimum seviyede taşımayı sağlar, yaraların onarılması için zemin hazırlar.

http://www.biyologlar.com/bitki-anatomisi-calisma-notlari

Blastokist Transferi Nedir?

Embriyonun, gelişiminin 5. Gününde, yani rahim duvarıma tutunmadan hemen önce ulaştığı aşamaya blastokist adı verilir. Embriyo bu dönemde sayılamayacak kadar çok sayıda hücreye bölünmüş durumdadır. Keza ileride bebeği ve plasentayı oluşturacak olan hücreler birbirinden ayrılmış şekilde izlenebilmektedir. Tüp bebek tedavisinde embriyonun laboratuarda bu aşamaya kadar geliştirilmesi ve sonrasında ana rahmine yerleştirilmesinin sağladığı bazı avantajları vardır. Tüp bebek tedavisinde gebelik şansını arttıran önemli faktörlerden birisi, geliştirilen embriyoların arasından en iyi şekilde büyüme gösteren embriyonun seçilerek ana rahmine transfer edilmesidir. Laboratuarda elde edilen embriyolar 5 günlük bir gelişme yarışına tabii tutuluyor gibi düşünülebilir. Bu süre içerisinde en iyi gelişen embriyo, gebelik açısından en yüksek şansa sahip olacak embriyodur. Özellikle ülkemizde transfer edilecek embriyo sayısının kısıtlanması, gebelik şansı en yüksek olan embriyonun seçimini daha da önemli kılmaktadır.Transfer edilecek olan embriyonun seçimi için kullanılan bazı kriterler mevcuttur. Döllenmeden itibaren hücre çekirdeklerinin yapısı, embriyonun bölünme hızı, hücre sayısı, hücrelerin birbirine oranı, hücreler arası artıkların oluşumu gibi pek çok kriter, embriyonun sağlığını göstermekte, dolayısıyla gebelik oluşturma potansiyelini yansıtmaktadır. Embriyoların laboratuar ortamında 5 gün büyütülmesi ve bu süreç içerisinde tüm kriterler açısından değerlendirilmesi, seçim açısından pek çok artı getirmektedir. Embriyonun seçimi için kullanılacak en anlamlı kriter ise 5. günde güzel gelişen bir blastokist formunu almasıdır. Tüp bebek uygulamalarının başladığı ilk yıllarda embriyolar döllenmenin hemen ardından anne adayına transfer edilirdi. O yıllarda kültür ortamı olarak kullanılan solüsyonlarının embriyoyu laboratuar şartlarında ne kadar canlı tutabileceği şüpheliydi. Yıllar içerisinde kültür ortamların, rahim içi ortamı taklit edecek derecede geliştirilmesi sayesinde embriyo transferi zamanlaması 5. güne kadar uzatılabildi. Blastokist aşamasına ulaşmış olan bir embriyonun gebelik oluşturma potansiyeli, daha erken safhada transfer edilmiş bir embriyodan daha yüksektir. Bu durum, tek embriyo transfer edilecek anne adayları için çok önemlidir. Keza tüm adaylar en yüksek gebelik şansını hak ederler. Embriyonun gelişimi, genetik ve metabolik sağlık durumu ile ilişkilidir. 5. günde ideal şeklini kazanmış olan bir blastokistin ağır bir genetik anomaliye sahip olma şansının çok düşük olduğunu kanıtlanmıştır. Blastokist transferinin avantajları kısaca şu şekilde özetlenebilir: Gelişim potansiyeli ve ana rahmine uyumu daha iyi olan embriyoların seçilebilmesi ve embriyo gelişimini daha iyi gözleyebilme Embriyoları en yüksek gelişim potansiyeline sahip oldukları dönemde yani blastokist aşamasında dondurabilme Embriyo canlılığının incelenebileceği metodlara fırsat tanıması Ağır genetik anomaliye sahip embriyoların elimine edilebilmesi Daha yüksek gebelik şansı Tekrarlayan gebelik başarısızlıklarında daha iyi sonuçlar elde etme şansı

http://www.biyologlar.com/blastokist-transferi-nedir

PGT Metodları

Polar Body Biyopsisi: Maternal olarak kalıtılan genetik bozukluklar için birinci polar bodynin (BPB) prekonsepsiyonel genetik analiz için kullanılması Verlinsky ve arkadaşları tarafından yoğun olarak çalışılmıştır. BPB, birinci mayotik bölünme sırasında oluşur ve başarılı fertilizasyon veya normal embriyonel belişme için gerekli değildir. IVF’da yapıldığı gibi preovulatuar oositler aspire edilir. Sekonder oositin genetik durumu BPB’nin genotipi çalışılarak anlaşılır. Kromozomal crossing over söz konusu değilse, aspire edilen BPB’de mutant alel varlığında oositte normal alel olacaktır. Bu durumda oosit IVF için kullanılacak ve daha sonra transfer edilecektir. Polar body genetik analizinin bir takım dezavantajları vardır. En önemli olanı direkt oositin genotipinin çalışılmıyor olmasıdır. Çünkü crossing over söz konusu olduğunda tanısal hata olacaktır. Crossing over honolog kromozomlar arasında DNA değişimidir ve sentromerden uzaklaşıldıkça ihtimali artar. Bu durumda, ikinci polar body veya blastomer biyopsisi gibi ileri testlere ihtiyaç vardır. Yine IVF çalışmalarında görüldüğü gibi zonanın diseke edilmesi polispermi riskini artırmaktadır, böyle bir durum polar bodynin aspire edilmesi halinde de görülebilir. Ayrıca polar cisimcik üzerinde polimeraz chain reaksiyonu (PCR) çalışması diğer tek hücre PCP çalışmalarından daha zor olabilmektedir. Polar body biyopsisi aspirasyon ve extrusion metodlarıyla yapılabilir. Sonuç olarak BPB’nin önemi, bize fertilizasyon öncesi bilgi vermesidir. Klivaj Stage Embriyo Biyopsisi: Embriyonun gelişimini bozmadan mikromanipülasyon yöntemi ile blastomer biyopsisi yapmak mümkündür. Elde edilen blastomerler genetik anomali ve sex tayini için kullanılmaktadır. İnsan embriyosundan blastomer biyopsisi ilk olarak 1989 yılında Londra’da Hammer-Smith Hastanesinde Handyside ve arkadaşlarınca yapılmıştır. 4 veya 8 hücreli embriyoda hücre sayısının yarısı oranında blastomer biyopsisi yapmak embriyo gelişimini etkilemektedir, fakat 8 hücreli embriyodan 3 adet blastomer alınması embriyo gelişimini bozmamaktadır. Blastomer biyopsisi sırasında zonada delik açıldığından dolayı implantasyon oranında artış olduğu da gösterilmiştir. Blastomer biyopsisi aspirasyon veya extrusion metodlarıyla yapılmaktadır. Bu konuda yoğun çalışmaları olan Tarin ve Handyside, optimal biyopsi metodları olarak, extrusion yönteminin varyasyonları olan displacement ve push metodlarını önermişlerdir. Ayrıca, en uygun biyopsi zamanı olarak da genetik analiz için enfazla DNA’nın elde edilebildiği, 1-3 blastomer biyopsisinin yapılabileceği 3. gün 8 hücreli embriyo safhasını önermişlerdir. Blastosit (Trofekdoderm) Biyopsisi: Gardner ve Edwards blastosit byopsisini tavşanlarda sex tayini için ilk kullananlardır. Blastosit evresinde hücreler, embriyoyu oluşturacak iç hücre kütlesi ve plasentayı oluşturacak dış hücre kütlesi, trofektoderm olarak ikiye farklılaşırlar. Trofektoderm esas olarak plasentayı oluşturduğu ve fetusun gelişiminde rol almadığı için fetusa zarar gelmeden hücresinin bir miktarı örneklenebilir. 5-6. günlerde blastositten 10-30 trofektoderm hücre biyopsisi yapılabilir. Fakat 10 hücrenin üzerinde biyopsi alınması human chorionic gonadotropin miktarını azaltacaktır. Bu düşüş, transfer sonrasında gebeliği desteklemek için dışarıdan gonadotropin verilmesiyle desteklenebilir. Biyopsi için, iç hücre kütlesinin karşı tarafında zona pellusidaya bir delik açılır; 12-18 saat sonra bu boşluktan herniye olan hücreler stereo-dissecting mikroskop altında mikroneedle ile ayrılır. Başka biyopsi yöntemleri de vardır. Blastosit biyopsisinin polar body veya 4-8 hücreli embriyo biyopsisine üstünlükleri: 1) Genetik tanıda kullanmak için daha çok hücre elde edilir. Bu da tanının doğrulanması için testlerin tekrarlanmasına ve güvenirliğin artmasına izin verir. 2)Biyopsi sırasında sadece extra-embriyonik hücreler alınır, böylece fetusa yönelik potansiyel risk en azdır. 3) Blastosit evresinde embriyonik gen ekspresyonu oldukça belirgindir, böylece daha önceki evrelerde uygulanmayan biyokimyasal metodlar genetik hastalıkların tanısı için kullanılabilir. 4) Kriyopreservasyon daha iyi tolere edildiğinden çiftler daha sonraki IVF siklusları için bu embriyoları kullanabilirler.

http://www.biyologlar.com/pgt-metodlari

Bitki Fizyolojisi Ders Notları

Fizyolojinin başlangıçı tohumun çimlenmesiyle başlar.Çünkü bitkilerin hayat devreleri spor ya da tohum faaliyetleriyle başlar.Çimlenme embriyodan ekolojik isteğe göre optimum koşullarda normal bitki yapılarını oluşturma yeteneğidir.Bir tohum gömleğinden radikula belirmesi çimlenmenin en önemli kısmıdır.Bu devrede sert koruyucunun engel olmaktan çıkarılması esnasında ise bir çok fizyolojik olayların başlamasıdır.Çünkü buradaki fizyolojik olayların sonucunda hücre bölünmeleri başlayıp tohumda büyüme dolayısıyla hacminde artma olacaktır.O halde radikula belirmesinden itibaren(çimlenmenin başlangıcı) henüz ayrıntısı bilinmeyen biyokimyasal(Fizyolojik) olaylar meydana gelmekle beraber bu olayların en önemlisi solunumun artmasıdır.Bu durumdan sonra çimlenmede 2. derecedeki metabolik aktivite enzim aktivitesinin artmasıdır.Burada faaliyet gösteren enzimlerin bir kısmı önceden tohumda vardır,bir kısmı da hücre tarafında sonra üretilmektedir.Bütün bunlar bize çimlenmeyle metabolik faaliyetlerin başladığı ve hücre için ihtiyacı olay her şeyi üretebildiği fikrini vermektedir.Örneğin çimlenme esnasında tohumda üretilen amilaz enzimi depo maddelerinin parçalanmasında önemlidir.Ayrıca RNA-az ve proteolitik enzimlerde çimlenme sırasında üretilen enzimlerdir.Tohum çimlendikten yaklaşık ½ saat sonra ,bu kez protein sentezinin aniden arttığı görülmektedir.Çünkü çimlenmeden yarım saat sonra mevcut hücrede polizomların sayısı aniden artar.Hücrenin bir iskeleti vardır ve hücrede bir bölgeden bir bölgeye geçiş kolay değildir.Hücrede proteinlere az ihtiyaç olduğu zamanlarda Ribozomda üretilen protein yeterliyken hücre tam inhibitörle karşılaştığında bu yeterli olmamaktadır. Çünkü hücredeki bu zehrin dışarı atılması için daha enzime ve proteine ihtiyaç olduğundan ve bunu da ribozomda üretilen protein yeterli olmadığından dolayı polizomlardaki protein üretimi aniden artar. Mevcut enzimler ve bunların aktivitelerindeki artış su alıp turgorunu artıran ve buradaki reaksiyonların endosperme doğru hareketlerini de beraberinde getirir. Endospermdeki besinler parçalanıp eritilerek embriyonun beslenmesi için aktive edilir. Bir tohumun hem çimlenmeden önce hem de çimlendikten sonra biyolojik polimerler tarafından deneye tabii tutulursa çimlendikten sonra bunların atıldığı görülür.Söz konusu azalma çimlenmenin ilk evrelerinde maksimumdur.(Bölünme o devrede fazla olduğu için) Tohumda fizyolojik faaliyetlerin gerçek anlamda başlayıp normal bir çimlenme olması iki faktöre bağlıdır.Bunlar:• İç Faktörler:1. İç faktörün asıl özelliği tohumun biyolojik yapısı ve ekolojik isteği tarafıdan tayin edilir.Bundan sonraki endospermdeki enzim ve hormonların bozulmamış olması,patikte buna tohumların canlılığını sürdürmesi denir.Bu durumda tohum dormansi durumundadır.2. Tohumları olgunlaşmış olması3. Embriyonun yaralanmamış ya da zedelenmemiş olması.4. Tohum parazitleri ve zararlıları tarafında yaralanmamış olması.5. Büyüme ve gelişme esnasında oluşacak tohum kabuğunun endospermi koruyacak şekilde güçlü çimlenmeye engel olacak şekilde bir yapı göstermesi gerekir.• Dış faktörler:Dış faktörler tohumun çimlenmesinde iç nedenlere oranla çok daha etkili ve yaygındır.Bu da habitat ve nişin ekolojik koşullarını kapsar.Bunlardan en önemlisi de tohumun çevresinde yeterli nem kullanabilir ve oksijene ulaşması gereklidir.Yukarıdaki faktörler optimum koşullarda olmazsa tohum tohuma geçemez.İç faktörler bazen genel olarak çimlenme için dış faktörler yeterli olsa da uygun olmuyor.Aynı durum bitkilerin diğer organlarında da görülebilir.Ama esasen dış koşullar dikkate alınmadan iç faktörler gelişmeye engel olabilmektedir.O yüzden çevre koşullarının uygun dönemi başlamasına rağmen bir çok tohum çimlenmeye geçmiyor.Bu olaya çimlenme durgunluğu anlamındaki dormansi denir.Tohumda çimlenmenin olmaması her zaman dormansi değildir.Çünkü çimlenme sırasındaki büyüme ve gelişme döneminde çeşitli nedenlerle gerileme olabilir.Dormanisinin doğal ve kültür bitkilerinde spesifik durumları vardır.Doğal bitkilerde yukarıda açıklanan içsel nedenlerle,kültür bitkilerinde ise tohumun derinde kalması,çeşitli engelleyiciler,kimyasal ilaçlar vs. çimlenmeyi engelleyebilir.O yüzden tohum ya da başka bir bitki organındaki pasifliği dormansi olarak nitelendiremeyiz.Çevre koşullarının etkisiyle bir bitki organının gelişmesindeki gecikme daha çok dinlenme hali bu sözcük ile ifade edilir.Sonuç olarak bitkilerdeki her dinlenme dormansi değil,ancak her dormansi bir dinlenmedir.Dormanside yukarıdaki iç nedenlere ilaveten tohum kabuğunun su ve gazlara karşı geçirimsiz olması kabuğun mekanik olarak embriyonun gelişimini engellemesi ve bazı doğal inhibitörlere sahip olmasıdır.Dış etkenlerden çimlenmede rol oynayanlar nem ve suyun etkisi olup bitki dünyası bu bakımdan iki guruba ayrılır.Bunlardan bir grubunun çimlenmesi için toprak nemi yeterlidir.Oysa aynı olay için diğer gruba aktif su gereklidir.Halbuki habitatta her ne kadar toprak suyu ve nem birbirinin tamamlayıcısı ise de hem aktif suyun minimum miktarının azalmasıdır. 1)Su ve Nemin Etkisi:Çoğu bitki tohumunun çimlenmesi için yeteri kadar su gerekmektedir.Ancak bazı tohumlar toprağın su kapasitesi %50 bazılarında %75 olduğunda çimlenir.Tohumları çimlenmesi için niş suyunu %50-75 olmalıdır.Buna rağmen tüm tohumlar tarla kapasitesinde su absorbe edebilirler.buna göre tohumların çimlenme suyunun tarla kapasitesi olduğu söylenir.Kuru topraktaki tohumların suyu emme kuvveti ne kadar fazla olursa olsun aldıkları su şişmelerine yeterli olsa bile ancak kısmen çimlenme sağlanır. Görülüyor ki ortamın osmotik basıncı ile çimlenme şansı paralellik gösterir.Tohumlara sağlanan fazla ve sürekli su çimlenmeyi hızlandırır.Ancak kademeli olmayan sürekli artış sınırlayıcıdır.Genel olarak havada %90 nem olduğunda tohum sadece bundan 2 gün faydalanabilir.Tohumun aktif suyla ıslanması 1-1.5 gündür.Uzayan süre ket vurucu olabilir.Burada tohumun emdiği su enzim faaliyetleri için ortam sağladığı gibi çözünen protein,yağ vs. besin maddelerini embriyonun büyüme noktalarına taşınmasını sağlar. Tohumdaki su alımı kabuktaki hidratasyon suyunda biraz yükselmiş atmosferden alınır. 2)Sıcaklığın Etkisi:Sıcaklığın çimlenmeye özel etkisi tam anlaşılamamasına rağmen su varlığında reaksiyonların başlaması ve hızına,suyun absorbsiyonuna ve tohumun oksijen alımına önemli etkileri olduğu kesindir.Bitkilerde türler arasında olduğu gibi aynı türün diğer bireyleri arasında görülen sıcaklık farkı isteği(niş durumunda) tohumlardan ziyade olgunluk çağında daha kolay belirlenmiş bitki yaşı ile depolama şartlarına bağlanmıştır.Oysa bitkilerin tohumdan tohuma kadar habitatta eko-fizyolojik koşullarda yaşar.Aynı türün bireyleri farklı sıcaklıklardaki habitatlarda yaşabiliyorsa bu onların ekolojik koşullara karşı toleransın sonucudur.Çünkü daima ekolojik koşullar optimum koşullar için gösterilir.Genel olarak serin iklim bitkileri sıcak iklim bitkilerinde daha düşük sıcaklıkta çimlenir.Bu nedenle kozmopolit bitkiler dünyanın %50’sinde yaygındır. Bitkilerin tohum çimlenme anındaki sıcaklık isteğini karmaşık hale getiren yetişme dönemidir.Örneğin,Colchium,Crocus,Muscari,Gagea vs. gibi bitkiler kar tabakası çözündüğü an;Phlomis,Cardus,Carthamus vs.sıcaklık 14-25oC’ye arttığında;Cyclamen,Muscari ve Gagea bazı türleride 8-14oC’de çimlenir.Bu gruplardan ilki ilkbahar geofiti,ikincisi yaz geofitleri, üçüncüsü ise sonbahar geofitleri denir.Genel olarak bir çok serin iklim bitkisi 20oC,sıcak iklim bitkileri35oC’de çimlenir.Bu iki durumdan meydana gelen sapmalar.gece-gündüz arasındaki sıcaklığı farkı çimlenmeye teşvik etmesinden kaynaklanır. 3)Işığın Etkisi:Bilhassa doğal bitkiler çimlenmede ışık gereksinimi bakımından ışığı seven,ışığa ihtiyat duyan ve fazla ışıktan zarar gören şekline üçe ayrılır.Bilhassa tohumda ışığa karşı davranış embriyo sitoplazmasındaki bir foto-kimyasal sistemin fitokrom denen bir pigmenti üretmesinden anlaşılır.Fitokrom pigmenti fotoreversibl(Dönüşebilen ışıkları emebilen) olduğu için çimlenmede iş yapan eko-fizyolojik olayların ışıkta ya da karanlıkta olduğuna karar veren metabolik kontrol düğmesidir.Örneğin fitokrom kendisi ışıkta çimlenen karanlıkta çimlenmeyen tohumlar için özellikle kırmızı ışığı emerken,bunun tersinde ışık emilimini engeller.Dolayısıyla bu metabolik anahtar alınacak ışığın miktarını ayarladığı için bitki dünyasında çok ışık kullanan(uzun gün bitkileri),az ışık kullanan(kısa gün bitkileri) ve sadece difüz ışık kullanan(gölge bitkileri)şeklinde üçe ayrılır.Çimlenmede etkin olan en önemli faktör ise vernalizasyon olayıdır.Deneysel çalışmalar çimlenmenin sadece ışıkla değil düşük sıcaklık periyodu ile ilgili olduğu görülmektedir.Çünkü bu olayla oluşan uyartı sadece soğuk periyotlarda oluşmuştur.Uyarıya neden olan faktörler ise soğuk ve ışığın etkisiyle üretilen ve özel uyarıcı görev yapan vernalin hormonudur.Bu olayın anlamı ilk baharlaştırma ya da düşük sıcaklıkta akımın(indüksiyon) hızlandırılması anlamına gelir. Bitkilerde vernalizasyonun en açık görüldüğü yer vejetasyon konileri ve tohumlardır. Vernalin hormonu hem tohumlarda oluşup embriyo sitoplazmasının metabolizmasında rol oynar hem de vejetasyon konisinden alınan uyartının diğer kısımlara aktarılmasında rol oynar. Olay her bitkide az çok belli bir indüksiyon ısısıyla bu ısının belli bir etkinlik süresi (vernalizasyon süresi)vardır ve türe göre değişir.Buna göre deneyler bitkileri vernalizasyon açısından da obligat ve fakültatif şeklinde ikiye ayrılmıştır.Obligatlar uzun gün bitkileri olup soğuk periyot şarttır.Diğerlerinde çimlenmeyi hızlandırmasına karşın eksikliliğinde de çiçeklenme olabilir.Ancak tohumların tohuma geçmesi garanti değildir.Deneyler tohum halde vernalize edilen türlerin soğuk periyot ihtiyacını fakültatif,fide ve sonraki dönemlerde vernalize edilenlerin ise obligat olması gerektiğini ortaya koymuştur. Örneğin çevremizde gördüğümüz buğdaylar ekimde tarlaya atılır.Su periyodu gelinceye kadar fide olur.Soğuk periyodu öyle geçirir.4)Oksijenin Etkisi:Çimlenmede tohumdaki besin maddelerinin oksidasyonu içi oksijen gerekmektedir.Çünkü bu katabolik olayla açığa çıkacak enerji embriyonun hayatını sürdürecek en önemli kaynaktır.Burada hücre büyüdükçe embriyo büyür ve oksijen ihtiyacı artar.Çoğu tohumlar kuru iken geçirimsizdir.Fasulye ve bezelye tohumları bu konuda gaddardır.Tohumlar su geçirmeye başladığı zaman oksijen girişi de başlar.Fakat tohumdaki hidratasyon suyu çimlenmeye ket vurucu yöndedir.O halde çimlenmenin gerçekleşmesinde tohumun en az %20 oksijen temas halinde olması gerekir.Doğal bitki tohumları derinlere gömüldüğünde ve oksijen almadığı sürece çimlenmez,fakat hayatta kalırlar.Ekosistemin dengesi için son derece önemli olan tohumlar her durunda sisteme en önemli katkıyı yapmaktadır.Ancak işleme karıştırma,erozyon ya da başka bir yolla toprak yüzeyine yaklaşmada çimlenir.O halde çimlenmede nişin durumu çok önemlidir(tohum yatağı).Nişte nem artınca nem azaldığında bu ikisini birlikte kapsayan topraklar iyidir.Sonuçta yukarıda belirtilen faktörlerin bir arada bulunması halinde nişteki tohumun hava almasıyla kuru ağırlığı %60-100 artarak çimlenir.Olayda en önemli rolü şişme göstermiştir.Yani su metabolizmasıyla ilgili olan olaylar tamamlanmıştır(difüzyon,osmoz). Sonra tohumda depolanmış ilk şekerler suda erir,nişasta ise diastaz enziminin etkisiyle su alarak maltoza dönüşür.Buradaki maltozda maltaz enziminin etkisiyle glikoza çevrilir.böylece glikoz difüzyon-osmoz kuvvetleriyle hücreden hücreye geçerek yeni uyanmaya başlayan fideciğe ulaşır ve orada ilk etapta selüloz ve nişasta gibi maddeleri teşkil eder.Proteinler ise başka enzimlerle aminoasitler ve amidlere parçalanarak fidecik büyümesinde değişik şekilde kombine olarak farklı proteinlerin yapımı için kullanılır.Özellikle yağlı tohumlardaki yağlarda lipaz enzimiyle yağ asitleri ve gliserine parçalanır. Bunlara da çeşitli kimyasal değişikliklerle şeker yağların yapımında kullanılır.Çimlenmedeki fizyolojik faaliyetler ve büyümede kullanılan enerji,solunuma alınan oksijen vasıtasıyla karbonun Karbondioksite,H’nin su haline gelmesiyle(biyolojik oksidasyon) saptanır.Bu nedenle çimlenme halindeki bir tohumda solunum,kuru haline göre yüzlerce kat fazladır.Örneğin 1kg buğday çimlenirken 1 m3 havanın içerdiği oksijenin yarısını kullanır.Böylece solunumla oksijen devreye girince başlayan büyüme ve gelişme olaylarında diğer elementlerde ihtiyaç haline gelir.Tohum,kökleriyle aktif su alımına geçmeden önce ihtiyaç duyduğu en önemli elementler nitratlardır.Çünkü nitratlar tohum fide haline geldiğinde yaprağı oluştururken yapacağı fotosentez olayını düzenlemek için ışığa karşı istek ve hatta tohumdaki çimlenmeyi artırırken vejetatif metabolizmayı da artırmaktadır.Çimlenmede nitratlar sınırlayıcıdır.Çimlenme bittikten sonra büyüme ve gelişme olaylarını 3 temel gruba toplamak mümkündür:1. Metabolik olaylar fizyolojisi2. Büyüme ve gelişme fizyolojisi3. Hareket fizyolojisiO halde madde değişimi olan metabolizmayı metabolizma fizyolojisi diğerlerini ise 2 ve 3. maddeler inceler.1)Metabolizma Fizyolojisi:Burada bitki hücreleri ve dokuları fiziksel ve kimyasal değişiklerle yönlenir.Su,gaz ve eriyiklerin bitkilerce nasıl alındığını ;bunların bitkilerde hücreler dokular ve organlar arasında nasıl taşındığını;besin ve kompleks bileşiklerin (hormonlar)nasıl sentezlendiğini;büyüme ve gelişme olaylarında ihtiyaç enerjisinin sentezlenen bileşiklerden nasıl sağlandığını;yeni dokuların nasıl yapıldığını ve vejetatif bazı dönemlerinde üreme organlarının teşekkülüne ne zaman başladığını araştıran bir fizyoloji koludur.Bu temel olaylar iki yönde ele alınır:a) AnabolizmaSentez ya da asimilasyon olaylarını gerçekleştiren bu devre bitkilerin değişik yollarla ortamdan aldıkları ham besin maddelerini bünyelerinde yararlı bileşikler yapımı olayıdır.Yani metabolizmanın yapıcı kısmıdır.b) KatabolizmaParçalanma olayları olup bitki biyolojik dinanizmde gerekli enzimce zengin bileşiklerin kullanılması için bileşiklerin parçalanması olayıdır.Yani metabolizmanın yıkıcı kısmıdır.Metabolizma fizyolojisinde en önemli unsur bitkileri oluşturan elementlerdir ve ayrıntılı incelenmeleri gerekmez.İlkel analizle elde edilen sonuçlar metabolik olaylar hakkında zaten yeterli bilgi veriyor.Tüm canlı hücrelerinde olduğu gibi bitki hücrelerinde de su maksimum düzeyde bulunur.Alınan suyun çoğu atmosfere verilir.Bir bölümü dokularda su olarak kalır ve diğer kısmı da değişik bileşikler yapmakta kullanılır.Bitki nişinde suyun az ya da aşırı bulunması gelişimi diğer faktörlere oranla daha fazla etkiler.Su azlığında yeterli turgor sağlanmaz.Hücrelerin büyüyüp gelişmesinde turgor basıncıyla meydana gelen reaksiyonlar sonucu sağlana enerjiye bağlı olduğu için biyolojik dinanizm(BD) minimuma iner.Yine bitkilerde su azlığında yaşlı organlardan gençlere su nakli yapılarak bu ekstrem koşulun önüne geçilir.Su noksanlığında bitkinin ilk kontrolü stomalara müdahale etmektir.Su fazlalığında akuatik bitkiler hariç diğerlerinin gelişimini olumsuz etkiler.örneğin nişte biriken su toksik etkisi yapan maddeleri artırır,solunum için gerekli oksijeni azaltır.Daha da önemlisi bitki topraktan nitratları alamaz.Böylece kök gelişmesi azalır.Bu da genel metabolizma düşüşüne neden olduğundan kök gelişmesi nedeniyle verim düşer.Bitki gevşek yapılı olur ve direnç azalır.Bitkideki su miktarı türe,aynı türün farklı organlarına ,aynı organların günün değişik zamanlarındaki durumuna ve mevsimlere,bitkinin yaşına,toprağın tarla kapasitesine, absorbsiyon transporasyon miktarlarına ve toprağın mineral zenginliğine göre daima değişkendir.Bir çam tohumuyla yapılan deneyde tohum çimlenmeden önce %7 su içerirken, çimlenme esnasında bu miktar %172 artar.Meritemlerde %90 su içeren kök ve yumrularda daha az su bulunur.Bitkilerdeki su kapasitesinin en değişken dönemi günün farklı saatleri ve mevsimleridir.Bu durum tamamen kuru madde artışı ve kuru madde işgalinden dolayı su miktarı azalmasından kaynaklanır.Ama özel olarak günü farklı saatlerindeki değişme ise suyun absorbsiyonu ile transporasyonu ile alakalıdır.Güneşli günlerde sabah erkenden öğlene doğru transporasyonda da artış olur.Bu olayın temelinde sabahın erken saatlerinde bitkinin suyu taşıma güçlülüğü vardır.Yani absorbsiyon yetersizdir. Bitkilerde su kapsamı tür topraktaki mineral madde ve miktarına göre değişir.Örneğin toprakta potasyum arttığında su kapsamının arttığı belirlenmiştir.Fakat sodyum ile bu olay terstir.Fosforun artması ya da azalması cüzi olarak artış yönündedir.Bitkilerin su kapsamının belirlenmesinde en ekonomik yönü kuru ağırlık tayini yapılmasıdır.Deney için farklı bitkilerin farklı organları belli ölçülerde önce taze olarak sonrada 105oC’lik etüvde belli aralıklarla kurutulduktan sonra tartılması ve değişmeyen en son tartımın kuru ağırlığı verdiği en uygun yöntemdir.Deneyin en önemli yönü hata kaynaklarının azaltılmasıdır.Bu da suyun bitkilerden uzaklaşma hızının hangi etkenlere bağlı olduğuna,Kullanılan malzemenin hassaslığına(terazi) ve titizliğe bağlıdır.Bunu dışında materyalin otsu ya da odunsu oluşu,organın cinsi,etüvün genişliği etüvdeki materyalin miktarı,ara sıra etüvün devreden çıkması ve kontrol esnasında etüv kapağının açılıp kapanması vs. Sonuçta: % Su Miktarı = Su Miktarı x 100 Yaş AğırlıkFormülüyle hesaplanır ve biter.Burada kuru maddenin %10’nu inorganik,%90’ı organikten oluştuğu görülebilir.Bitki Organları Bitki % Su Miktarı Yaprak Sedum (Dam Koruğu) %95 Syringia(Leylak) %70 Pinus(Çam) %50Odun Pinus(Çam) %50 Fagus(Kayın) %40Meyve ve Tohum Triticum(Buğday) %14 Pisum(Bezelye) %12 Pyrus malus(Elma) %85 Tablo incelendiğinde elma türü meyveler hariç genç organların yaşlı organlara oranla daha fazla su içerdiği görülür.Ayrıca tohumlarda ve meyvelerde su oranı ve içeriği azdır. Kuru distilasyon,Bitkideki mikro ve makro elementler,minimum yasası ve bitkilerde N kapsayan organik bileşikler……. (bkz.ek) Su Metabolizmasıyla İlgili OlaylarHer canlı metabolizmasının gücü nispetinde aktif yaşam sürer.Metabolizmanın derecesi ile kullanılan suyla ilgilidir.O halde metabolizmanın başlangıcı su alımının başlangıcından, hızı da kullanılan suyun miktarından anlaşılmaktadır.Su kullanabilen her bitki ve hayvan adaptasyonu sürdürüyor demektir.Ancak adaptasyondaki aktif ve pasiflikte suyun miktarıyla ilgilidir.Fakat kullanılan bu su miktarı her zaman enerji üretiminde kullanılmayabilir.Bitkilerde su alma mekanizmasını iyi anlayabilmek için su ve suyla alınan mineral maddelerin taşınmalarında cereyan eden temel olayların bilinmesi gereklidir.Bunlar:1)Difüzyon 2)Osmoz 3)Şişme 1. Difüzyon(Yayılma,Dağılma)Moleküllerin çevreden aldıkları kinetik enerji ile bulundukları ortamda yapmış oldukları hareket olaylarıdır.Zarsız ortamdaki Osmoz olayıdır. Maddeyi meydana getiren tüm tanecikler hareket halindedir ve bu hareketleri gelişi güzeldir. Çünkü sahibi oldukları enerjiyi kendileri üretmeyip dışarıdan aldıkları için kinetik enerji değişimlerine uğrarlar.Eğer aldıkları enerji kademeli değişse sapma meydana gelir.Fakat gaz molekülleri başka moleküllere çarpıncaya kadar düz hareket eder.Sıvılarda titreşerek hareket, katılarda ise sabit titreşen bir hareket vardır.Normal basınç ve sıcaklıkta gaz molekülleri çok geniş çapta ve kolayca yayılış yaparlar.Bir parfüm ağzı açıldığında yoğun konsantrasyonlu olduğu için havaya geçiş ve yayılışı hızlı olur.Havada düzenli bir yayılış yaparak ortamı eşitlediğinde havadan şişeye bir geçiş olmuş demektir.Birim zaman içerisinde parfüm kutusuna giriş ve çıkış dengelenir.Buna dinamik dengenin kurulması denir.Gaz molekülleri arasında olduğu gibi sıvı ve katı moleküller arasında difüzyon olur.Ayrıca iyonlar ve koloidal partiküllerde difüzyona uğrar.KarbonhidratlarMineral ve tuzlar SıvıSu KolloidProteinLipit Katı Sonuç olarak küçük çaplı moleküller ve iyonlar büyük olanlara göre daha hızlı difüzyon yaparlar.Örneğin bir tuz iyonunu glikoz molekülünden daha hızlı Difüzyon yapar. Ayrıca hidratasyon gücü yüksek olan moleküller ve iyonlar düşük olanlara göre daha yavaş difüzyon yapar.Difüzyonda kütlede önemlidir.Kütlesi fazla olan az olandan daha yavaş difüzyon yapar.Difüzyon Basıncı(DB):Her hangi bir madde moleküllerinin çok yoğun ortamdan daha az yoğun ortama geçebilme yeteneğine denir.Başka bir deyişle bir kapta bulunan çözelti içerisindeki moleküllerin difüzyonlarından kaynaklanan çepere yaptıkları basınca denir.Çözelti içerisinde her hangi bir molekülün DB’si diğer moleküllerin DB’sinden tamamen bağımsızdır.Örneğin içerisinde az miktarda hava bulunan balon CO2 gazıyla dolu bir ortama konulduğunda balonun yavaşça şiştiği görülür.Çünkü ortamdaki CO2 yoğunluğu içeriden kat kat fazladır.Bu olaya da Difüzyon basıncı değişkenliği(DBD) denir.Bu olay bitkilerde çok önemlidir.Çünkü bitkilere gerekli maddelerin sürekli alınması gereklidir. Özellikle stomalarda bir kısım hava girerken bir yandan da başka bir kısımda hava ve su çıkar.Aynı durum hücrelerde de mevcuttur.İşte her maddenin alınmasının ve verilmesinin birbirinden bağımsız olmasını gerçekleştiren olaya DB değişkenliği denir. Yoğunlukları farklı iki sıvı Difüzyon ortamında bir araya gelirse yoğun olan diğerinden su çeker.İşte suyun yoğun olduğu ortamdan az yoğun ortama girişini sağlayan bu kuvvete ise DB farkı(emme kuvveti) denir.Difüzyon ortamındaki Difüzyon hızını(DH) etkileyen en önemli faktörlerden biride Difüzyon direncidir.Çünkü her hangi bir ortamda 2 maddenin birbirine difüzyonu sırasında moleküller arasında mutlaka çarpışma olur.Moleküller ağırlık ve büyüklük bakımından fazla olanlar küçük olanlara direnç göstererek hızlarını artırırlar.O halde büyük ve ağır moleküllerin ortamdaki miktarı ile DD doğru orantılı,DH ile ters orantılır.Moleküller arasındaki DD en düşük olan gazlardır.Dolayısıyla en hızlı hareket eden ve dinamik dengenin kurulmasını en kısa zamanda sağlayan gaz ortamının difüzyonudur.Böylece gazları difüzyonu DB’nin yüksek olduğu ortama doğrudur.Yani DB farkı difüzyonu doğru orantılı olarak etkiler.Öte yandan difüzyonun olduğu 2 ortam arasındaki yol uzunluğunun etkisi ile ters orantılıdır.Difüzyon Basıncı Gradienti(DBG):İki ortam arsındaki DBF’nin 2 ortamı ayıran yola (uzaklığa) oranı olduğundan buna Difüzyon basıncı derecesi denir.O zaman Difüzyon yolunun uzunluğunun artmasından kaynaklanan gelişme Difüzyon olan maddelerin özelliği ile telafi edilir.DBG arttıkça Difüzyon artar.Yol uzadıkça ortamdaki büyüklük artar.Dolayısıyla ortamdaki çözeltini yoğunluğu azalır. Aynı şartlar altında farklı gazların DH’si farklı olur.Bu durum söz konusu gazın yoğunluğu ile ilgilidir.Örneğin Havada oksijen hidrojenden 16 defa fazla olduğu için hidrojenin DH’si oksijenden 4 kat daha fazladır.Grahm yasasına göre gazların difüzyonu yoğunluklarını kare köküyle ters orantılıdır.Ortamın sıcaklığı artıkça kinetik enerjilerinden dolayı Difüzyon hızı artar.Deneysel olarak 1oC’nin artışı karşılığı %2-4 artar.Yine ortamın yoğunluğu Difüzyon hızına ters tepki yapar.Sıvı ortamdaki maddelerin difüzyonu:Bir maddenin suya karşı isteği varsa o madde suda çözünür.Ancak her maddenin kendine öz çözünürlüğü vardır.Çözünürlük kapasitesi ne olursa olsun sıvılarda çözünen maddeler molekül ve iyonlarına ayrıldıkları için kinetik hareketlilik artar.O halde Difüzyon olayı gözlemek mümkün olur.Ancak ister molekül ve iyonlarına ayrılma isterse gözlemlemekteki kolaylık çözünürlük gücüne bağlıdır.Örneğin içerisinde saf su bulunan şekildeki kaba KMnO4 kristali atılırsa kristalin molekül ya da iyonlarının suya difüzyo-nu sudaki rengin değişimiyle anlaşılır.DH hakkın- da bilgi edinmek için başka bir kristalde konulabilir.Kristallerin eriyerek difüzyona başlamaları birbirinden farklı olsa da gene de yavaştır.Çünkü kristallerin molekülleri su tarafından ayrılıp uzaklaştırılması belli bir zamana tabidir.Aynı zamanda DBG azalması moleküllerin hidratasyonu daha büyük iç sürtünmeye neden olmaktadır.Çözeltilerdeki herhangi bir maddenin hızı ve yönü diğer maddelerin hız ve yönüne bağlı değildir.     Gazların difüzyon Hızına Etki Eden FaktörlerSıvıdaki madde parçacıkları da difüzyona etki eder.Kural olarak küçük molekül ve iyonların büyük olanlara göre difüzyon hızı daha fazladır. Örneğin H molekülü glikoz molekülüne göre daha hızlı difüzyon hızına sahiptir.Difüzyona etki eden süre,difüzyon kabının büyüklüğü ve difüzyon yolunun uzunluğu ortam sıcaklığı ve karıştırmadır.Difüzyon olayı bir sıvı içerisinde birden fazla katı madde konulursa çözeltideki katıların moleküllerini difüzyon yönü ve hızı birbirinden bağımsızdır.Çünkü farklı moleküllerin hidratasyon kabiliyeti ve DBF birbirine benzemez.Sıvı bir madde katı bbir ortamda difüzyona uğruyorsa yer çekimi yönünde molekül ağırlığı arttıkça hız artar,azaldıkça azalır.Ancak yer çekimine ters yönde ise parçacıkların difüzyonu molekül ağırlıklarıyla ters orantılıdır.   Sıvını katıya difüzyonu sırasında difüzyon ortamının yoğunluğu ile difüzyon hızı yine ters orantılıdır.   Yoğunluğu aynı olan eşit çaptaki 4 tane deney tüpüne konulmuş jelatin çözeltisi vardır.Aynı laboratuar ortamında aynı anda molekül ağırlıkları farklı a,b,c,d maddeleri tüpe konuluyor. Belli bir deney süresinden sonra molekül ağırlığı bakımından kaplara yer çekimi doğrultusunda tüpe yayılma d > c > b > a şeklindedir.Eğer aynı moleküller molekül büyük-lüğü bakımından deney yapılacak olursa a > b > c > d şeklinde olmalıdır.Diğer bir örnek ise molekül ağırlığı belli olan bir maddenin farklı yoğunluktaki jelatin çözeltilerine olan difüzyonudur Burada da görüldüğü gibi difüzyon hızı ortam yoğunluğu ile ters orantılı olduğu için difüzyonun hızı I.tüpten IV. Tüpe doğru artar.Eğer difüzyon olayı bu kurala uymuyorsa deney hatasının çözeltinin hazırlanmasından kaynaklandığı düşünülür.Buna göre difüzyon hızı difüzyon yapan maddelerin difüzyon ortamındaki yoğunluk farkları ve 2 maddenin değme yüzeyleri ile doğru,difüzyon eden maddelerin molekül ağırlığı ile ters orantılıdır.Yine difüzyon-osmoz olaylarında da zarın kalınlığı,sıvıların basınç farkları,porların yarıçapı ve viskozite ile ilgili olarak değişebilir(Doğru orantılı). 2.Osmoz(Geçişme)Laboratuar ortamında yarı geçirgen canlı sistemlerde seçici geçirgen bir zarla ayrılmış ortamda,su konsantrasyonunun yüksek olduğu ortamdan düşük olduğu ortama doğru geçiş olayıdır.Ya da yoğunlukları farklı 2 çözeltinin zar bulunduğu taktirdeki difüzyon olayıdır.O halde osmoz difüzyonun özel bir durumudur.   Ozmometrede görüldüğü gibi su hemen huniye geçer.Çünkü beherdeki su konsantrasyonu hunininkinden fazladır.Su geçişi arttıkça çözeltinin yoğunluğu azalır.Olay ilerledikçe hacim artışı nedeniyle hunideki çözeltinin yüksekliği manometredeki Hg kolunda yükselme meydana gelir.Osmozis olayı bitkilerde sürekli cereyan eden metabolizmanın bir dönemidir. Hücre zarı ile koful,çekirdek ve diğer organellerin zarları tam anlamıyla seçici geçirgen özelliktedir.Çünkü zarların kimyasal yapıları birbirinden farklı olsa bile birim yapıları aynıdır. Genellikle osmoz 2 çözelti arasında meydana gelir.Su konsantrasyonu az olan çözeltilerin su potansiyelinden daha düşük olduğuna suyun hareketinin yüksek olduğu taraftan düşüğe doğrudur.Ancak aynı şeyi diğer madde molekülleri için söylemek mümkün değildir.O halde saf suyun potansiyeli diğer tüm sıvıların su potansiyelinden daha yüksek olduğu için sıvılar içinde en iyi çözücü ve en hızlı geçiş yapan sudur.Şekildeki zar yarı geçirgen olduğu için şeker molekülleri porun genişliğinden büyük olduğundan su tarafına geçiş yapamaz.Bu durumda şekerin molekülleri porların ağzına gelerek su moleküllerini kendine çeker.Bir süre sonra şeker çözeltisinin yoğunluğu azalarak hacim ve basınç artar.Böylece etkisi zara yansıyan bir osmotik basınç ortaya çıkar.Burada içeriye giren su moleküllerinin kuvveti çözeltinin karşıt kuvvetinden fazla olduğu sürece su girişi olur.Ancak su molekülünün hareketi iç kuvvete eşit olunca olay durur.yukarıdaki osmoz olayında da görüldüğü gibi osmotik basınç zarı geçemeyen moleküllerin büyüklüğü ile değil sayısıyla doğru orantılı olarak artar.     Bitki hücresi en iyi bir osmotik sistem durumundadır.Selüloz çeper sermabl(yarı geçirgen),zar ise seçici geçirgendir.Şekildeki osmometre deneyinde saf su molekülleri huniye geçer.Manometrenin kolundaki cıva düzeyini yükseltmek üzere meydana gelen basınç osmotik basınçtır.Bu basınca emme basıncıda denir.Çünkü olay su konsantrasyonu düşük olan çözeltinin yüksek olan çözeltiden suyu emmesinden dolayı meydana geldiği içindir.Osmotik basıncı meydana getiren çözeltinin potansiyel değerine osmotik değer denir.Dikkate alınacak kadar osmotik değer meydana getiren en önemli maddeler şekerler,organik asitler ve inorganik tuzlardır.Hangisi daha çabuk erirse osmotik değer daha fazladır denir. Osmotik Basıncın Bağlı Olduğu Faktörler Bilindiği gibi osmotik basınç ,belirli bir hacim çözücü için çözünmüş madde moleküllerinin konsantrasyonu ile doğru orantılıdır.Kural olarak çözeltilerde yoğunlukla doğru orantılıdır.Aynı zamanda belli bir düzeye kadar sıcaklık artması da osmotik basıncı artırır.Yapılan deneylerde çözeltilerde gazların hacimlerinde olduğu gibi 1 mol eriyik 22,4 basınç oluşturduğu gözlenmiştir.şekildeki aniden ortaya çıkan sapmanın nedeni çözeltide yoğunluğun artmasıyla çözünen maddenin çözelti içerisinde fazla hacim işgal etmesinden kaynaklanır. Molekül ağırlığı yüksek olan maddelerde işgal edilen alada azalma olmasına yol açar.O zaman bu haldeki bir çözeltide çözünme olayının bulunduğu ortam yoğunlaşacağı için sapmaya neden olur.Diğer bir nedenle suda çözünen maddelerle su arasında bir çekim olayının bulunmasıdır.Bu şekilde suda çözünen madde moleküllerine su molekülleri bağlanır.Adsorbsiyon veya hidratasyon suyu da denilen bu tutulan su molekülünün çapını artırarak hareket alanını azaltır ve eriyerek zaman içinde iç sürtünmenin de boyutunu artırır.Çünkü eriyen maddenin molekül büyüklüğü büyür.Buda suyun hacminin azalmasına yol açar.İşte gittikçe hacmi azalan ortamda sapma meydana gelir.Osmozis veya şişme olayları sonucu bitki hücrelerinin stoma ve kafullardan hücre çeperine yapılan basınca hidrostatik basınç(Turgor basıncı),Hücre çeperinin protoplasta yaptığı basınca da çeper basıncı(EB) denir.Normalde çeper basıncı hidrostatik basınca eşit fakat karşıt bir basınçtır.Turgor basıncıda hücre içindeki sıvının osmotik basıncı yüksek olduğu için su hücreye kolayca girer ve hacim artışı yaparak zarı çepere iter.İşte bu basınçla hücre içerisine başka su moleküllerinin girmesini engellediği için çeşitli minerallerin alımı da durmuş olur.Örneğin,K’yi çok kullana bitkilerde Ca’nın engellenmesi aynı yolla olur.Ancak Bitki bu kez Ca’ya fazla ihtiyaç duyuyorsa yine aynı yöntemle K’yi engeller.Çeper basıncında ise hücre çeperi sert olduğu için hücreyi dengede tutmak amacıyla eşit zıt basınç yapmak zorundadır.İşte osmotik basınç ile turgor basıncı arasındaki farka bağlı su moleküllerini çekebilen asıl kuvvete emme kuvveti(EK) denir.O halde bir hücrenin yoğunluğu ne kadar fazla ise EK’de o kadar fazladır.Kısaca:EK=OB – TB Sonuç olarak TB bitkilere dayanıklılık sağlayan çoğunlukla otsu bitkilere direnç ve diklik kazandıran ama asıl enerjinin üretildiği metabolik bir ortamdır.Solmuş bir bitkinin sulu bir ortamda yeniden eski görünüşünü alması bu olay sayesinde olur. ŞİŞME Difüzyon osmoz yoluyla katı haldeki cisimlerin su alıp hacimlerini artırması olayıdır. Aslında osmoz difüzyonun,şişmede osmozun özel bir şeklidir.Yalnız şişme sırasında şişen ortamlar difüzyon ve osmoz bakımından çok farklılık gösterdiği için bu olaylarda suyun ne kadarının ne içerdiği ölçülemez.Çünkü giren sıvı miktarı belli olsa bile bu sıvının bir kısmı kapiller boşluklara girmektedir.Ancak bu olay şişen maddenin ve şişirici çözeltinin difüzyon basınçları farkı (DBF-emme kuvveti) ilgili olarak ortaya çıkmıştır.Şişen maddenin DBG’si (DBD) düşük olduğu sürece su girmeye devem eder.Ancak her sıvı emilmesi şişme değildir. Çünkü şişmede enerji üretimi ve hacim artışı karakteristiktir.Örneğin tebeşirden bir birkaç parçanın ağırlığı ve hacmi ölçülüp suya konulur.Bir süre sonra bu ölçümler tekrarlanırsa sadece ağırlığın değiştiği görülür.Tebeşir porlu yapıya sahiptir.Bu pordaki hava boşalıp su girer.Ağaç parçası aynı deneye tabii tutulursa ağacın hacmi artar.Miseller kohezyon kuvvetiyle Oysa Miseller kohezyon kuvvetiyle bir aradan tutulduğundan miseller arasına girişi fazla olsa da parçalanmasını önler.Bu da şişmede fazla su alımının sınırı aşmasını engellemesi anlamına gelir.Bir balon cam balonun içine konulursa cam engelleyen bir kuvvet oluşturuyor. Bir cisimde şişmenin meydana gelmesi için başlıca 2 koşulun sağlanması gerekir:a)Şişen maddelerin içerdiği sıvının DB ile şişiricinin DB’si arasında belirli bir fark olması lazım.Şişmenin miktarı bu farka bağlı olarak artar ya da azalır.(Emme Kuvveti) b)Şişen maddenin şişirici sıvıya karşı belli bir ilgisi olması lazım(Adsorbsiyon kuvveti ile olur).Terazide görüldüğü gibi,bir süre sonra terazi dengesinin yani A ve B kefesi tarafından değiştiği görülür.Bu durum NaCl şişede Na+ ve Cl- serbest suyu hidrote etmesinden kaynaklanır.A kefesine terazi dengeye gelene kadar ilave edilen ağırlık B’deki jelatinin almış olduğu fazla suyun ağırlığına eşittir.Başka bir deneyde kuru bezelye tohumu kumpas ile ölçülüp,tartıldıktan sonra dereceli mezürde saf suya konulur.1-2 gün sonra aynı ölçüme tabi tutulursa bütün ölçümlerde artma olacaktır.Tüm şişme olaylarında en çok enerji su alımının başlangıcında meydana gelir.Çünkü bu devrede (Başta emme gücü fazla olduğu için çok yüksek bir emme kuvveti oluşur).Eğer dış güçler şişen cismin hacminin artmasına yani genişlemesine ,(Yurgor artıyor,enerji üretimi artıyor)dış güçler bunu engellemeye çalışırsa en yüksek tepki atm’de (basınçta) meydana gelir.İşte bunlardan ilki çeper basıncı diğeri de Turgor basıncıdır.Örneğin;kurak havalarda kayalar arasında çakılan kuru odunlar yağmur yağdığında kayayı parçalar.Şişme olaylarını günlük en güzel örnekleri yağmurlu havadaki ahşap kapı ve pencerelerin durumudur.Şişmede şişiricinin sıcaklığının önemli etkisi vardır.Sıcak suda daha hızlı fakat , soğuk suda daha yavaş ama fazladır.Çünkü Sıcak su molekülleri ısı enerjisiyle maksimum hareket ederek miseller arasına ani giriş yapar.Bu da permabiliteyi azaltan bir şok etkisi yapar. Yani tahrip eder.O halde şişmede sıcaklığın derecesi çok önemlidir.Çünkü sıcaklık sıvı ortamdaki su moleküllerinin termik hareketlerini artırarak çözeltilerde daha bağımsız davranmayı sağlamaktadır(Sıcaklık artınca molekülleri hareket eder,bağlar kopar ve çarpışma olur).Bu nedenle sıcaklık şişmeye ayrılan süreyi azaltır.Fakat sıcaklık artışı ile birim zamanda şişme yüzdesi azalır. Sıcaklığın artışı belli bir dereceden sonra ters yönde etkiler.Osmotik basınç(EM) şişmeyi azaltan bir başka faktördür.Osmotik basınç ile şişmenin hızı ve miktarı ters orantılıdır.Çünkü osmotik basıncın artması demek çözeltideki çözünen birim madde başına düşen Su molekülleri sayısının azalması demektir.Bu durumda çözeltinin difüzyon basıncı azalır yani çözünmüş madde miktarı arttıkça şişen cisme giren su miktarı azalacaktır. ELEKTROLİTLERDE ŞİŞME Soru:Okaliptus meristemi(1),çimlenmekte olan köknar tohumu(2) ve patates yumrusu vardır. Su kapsamını tespit etmek istersek sıralama nasıl yapılır.Yanıt:Bir ortamda su miktarı ile nişasta miktarı ters orantılıdır.Yumrularda su yoktur. Tohumlarda çimlenme sırasında su miktarı %77 kadar artar.(321)Soru:Sulu ortamda yetiştirilen yumrulu bitkilerde Ca,Cl,S elementleri yumruda çok yaprakta yoktur.Niçin?Yanıt:S proteinleri yapısına giriyor. Elektrolitler iyonik bileşikler olduğu için çözündükleri zaman iyonlarına ayrılırlar. Ayrılan her iyon elektrik yükü taşır.Bu da onların mutlaka su molekülü hidrate ederek su örtüsü ile kaplanacağı anlamına gelir.O halde,elektrolitlerde şişen cisme iyonla birlikte su girer.Bu durum iyonları su tutma kapasitesine bağlı olup şişmenin miktarını düzenler. Görülüyor ki elektrolitlerde şişme suya göre değişiktir.Aslında bu değişikliğe neden olan asıl faktör iyonların elektrik yükleri ve atom ağırlıklarıdır(Çekim arttıkça yüklenme fazla olur,ağırlık artar).Birçok doğal jellerin(yumurta akı,cıvık mantarlar,sitoplazmanın kendisi) miselleri su ile temas ettiğinde ( - ) elektrik yükü kazanırlar.O yüzden temasa geçtiği elektrolitteki (+) katyonlar için bir çekme kuvveti haline gelirler.Onlarda (-) yüklü anyonları çekerler.Her ne kadar şişen madde ile elektrolitik iyonlar arasındaki ilişki bu maddelerin bünyelerine bağlı ise de bu eriyiklerde şişen bir cisimde 2 farklı elektrolit fazı vardır:1)Eğer şişen maddenin yapısı elektrolitlere yeter derecede geçirgen ide misellerin yüzeyi katyonlardan bir tabaka ile örtülüdür.Katyonlar şişen cisme hidratasyon suyunu da götürürler.böylece şişme suyu alınmış olur. İşte iyonların şişmedeki direkt etkisine P.İ.E.(Primer İyon Etkisi) denir.Ayrıca şişen maddeler aynı zamanda elektrolitlerde absorbe olmayan anyonlarla da temastadır.Yani şişen madde elektrolitlerin içeri girmeyen iyonları ile de temas halindedir.İşte içeri girmeyen bu anyonlar-da şüphesiz bir hidratasyon suyu vardır.Bu durum yukarıdaki olayın tersini ortaya çıkarır. Çünkü bu kuvvet ile su arasında rekabet başlar.Yani dıştaki anyonlar içerideki misellerden su çeker.Bu olaya da sekonder iyon etkisi denir.Şişmede başlangıçta EK’den dolayı hızlı bir giriş vardır.Her giren suyu bağlayıp gitti.Orada kalanların suyu içeri girenlerden fazla olunca dışa-rıdakiler suyu çeker.Denge sağlanana kadar.(Toprağın bitkiden su çekmesi)Katıların kazandığı su miktarını iyonların sayısı değil hidratasyon güçleri belirler.Yani miktardan ziyade absorbe olan veya olmayan iyonların hidratasyon kuvvetleri arasındaki fark belirler.Örneğin,önce eritilen sonra kurutulan jelatinden alınan silindirler.şemadaki eriyiklere konulduğunda en fazla şişme KI da meydana gelir.Çünkü bu eriyik serisinde atom ağırlığı en fazla olan iyondur. H2O KCl NaCl LiCl KBr KI%Şişme 100 103 109 114 120 ∞ 2)Eğer şişen maddenin yapısı elektrolitlere karşı yarı geçirgense hem anyonlar hem de katyonlar şişen cisim ile su için rekabete girer.Bu olay cismin emmek istediği suyun engellenmesi durumuna dayandığı için S.İ.E. vardır.O zaman yapıları yoğun olan cisimler tuz eriyiklerinde saf sudakinden daha fazla şişer.Bu durumda şişmede azalma katyonların giriş yeteneğiyle ters orantılıdır.Örneğin aynı büyüklükte ayrı tüpe eşit miktarda keten tohumu konularak her birinin üzerine 2’şer mol saf su,KCl,NaCl,LiCl bir deney süresi sonunda şemadaki gibi su dışındaki çözeltilerden KCl’de en fazla şişme olmuştur.Çünkü K’nın atom ağırlığı fazla,hidratasyon örtüsü ise azdır.En az şişme ise LiCl’de görülmüştür.Çünkü Li’nin Saf Su KCl NaCl LiClŞişme% 57 46 43 36           Durumu K’nın Tam tersidir.NaCl’de Na’nın özellikleri Li ve K’nın ikisi arasında olduğun için orta durumda bir değişme olmuştur.Demek ki bu deneyde de zarın yarı geçirgen olması sonuçları etkileyen en önemli faktördür.Sonuç olrak görülüyor ki,su metabolizmasıyla ilgili bu üç olay birbirini tamamlar niteliktedir.Çünkü genelde birinin nedeni ve sonucu ötekisidir. Bazen bu iki olay aynı anda gerçekleşebilir.Örneğin,Şişme olayı difüzyonun özel bir şeklidir. Çünkü bitki çeperini oluşturan her biri 2000 kadar glikoz molekülünden oluşan miseller arsına suyun girmesi difüzyon olayıdır.Aralarına su giren misellerin şişme miktarı kohezyon kuvve-tiyle kontrol edildiği için turgordur.tebeşir ve süngerin boşluklarının su ile dolmasının bu olayla ilgisi yoktur.Kısaca şişmede kontrollü(tepkili) hacim artışı karakteristiktir.Çünkü su alınmasına rağmen yerde kalan su yeterli değildir.Bu durumda şişen madde şişiriciden sıvı alıp boşluklarını doldurduğundan şişiricinin miktarı azaldığı için süreklilik göstermez.Her ne kadar şişerek azalan hacmi telafi gibi görülse de boşluklardaki hava yerine girmiş olan su miselleri birbirinden uzaklaştıran sudan bağımsız düşünülmelidir.O halde suya karşı ilgisi olan her madde hiç şişmese de içerisinde bulunduğu sıvıdaki su moleküllerini kendine bağlar. Yani hidratasyon suyu oluştururlar.Madde etrafında düzenli yerleşen bu su molekülleri sıvı içerisinde serbest dolaşan su moleküllerinden daha az hacim işgal eder.Şişme esnasında su molekülleri kendi kinetik enerjilerinin büyük bölümünü kaybederler.Kaybedilen bu kinetik enerji şişme ortamından ısı enerjisi olarak çevreye aktarılır. SU İLETİMİ *İyon AntagonizmasıBitki dünyasında halofit(tuzcul) bitkiler hariç tuz çözeltisi bitkiler için zararlıdır.Ayrıca bir tek tuzdan hazırlanan çözeltiler bir kaçından hazırlanan çözeltilerden daha zararlıdır.Örneğin,buğday fideleri ayrı ayrı 0,12 mol CaCl2 ve 0,12 NaCl çözeltisinde kök gelişimine bırakılmıştır.Aynı fideler 0,12 NaCl+0,0012 CaCl2 çözeltisine konulursa (c) şeklindeki görülür.Çünkü NaCl orta büyüklükte olup Na Hidratasyon suyuyla birlikte protoplazmaya geçer.Eğer ortama eseri Ca bileşiği katılırsa 2 değerlikli olan Ca’nın su örtüsü Na’dan daha fazladır.O halde büyük Ca molekülü içeri giremez.Üstelik sekonder iyon etkisi yapar.Bu durumda su kaybeden hücrelerin kapıları kapanır. Böylece Na iyonları içeri giremez.İşte iyonların birbirine karşı bu etkisine iyon antagonizması denir.Bu olaya bir örnekte Spirogyra deniz alginin metilen mavisinde tam boyanmasıdır.Eğer metilene AlCl3 katılırsa boyama tam olamaz.Bu durum diğer çözeltilerin içeri girip zehir etkisi yapmasını engeller.Olayın esası 2 ya da daha fazla değerlikli iyonların zarı yoğunlaştırdığı bilinmektedir.Zar yoğunlaşması porların kapatılıp.permabl’ın azalmasıdır.Böylece tek değerli iyonların geçmesi önlenir ve şişmeyi artırarak zehir etkisi yapmasını da ortadan kaldırır.İşte tek değerlikli bileşiklerde hazırlanmış çözeltilerin hücreye yaptığı etkiye sinerjistik etki denir.Sonuç olarak bir elementin yaptığı etkiyi ikinci elementin artırmasına sinerjisitk etki denir. Bitki Fizyolojisi Ders Notları Hazırlayan Duygu OKTEN  

http://www.biyologlar.com/bitki-fizyolojisi-ders-notlari-1

GİBERELLİNLER : Bitki Boyu Düzenleyicileri

Giberellinler Japonya’da 2. Dünya Savaşı yıllarında keşfedilmiştir, fakat bu sırada batı ile ilişkiler kopuk olduğundan batı bu keşfi 1950’lerde öğrenmiştir. Yüzyıl önce, Asya‟daki çiftçiler çeltik tarlalarındaki pirinç fidelerinin aşırı ölçüde boylandıklarını ve ince kaldıklarını gözlediler. Bu durumda, fideler olgunlaşmadan ve çiçek oluşturmadan önce, ince ve cılız oluyor ve bu sebepten dik duramayıp erkenden ölüyordu veya verim düşüyordu. Japon bitki pataloğu Kurusowa, 1926‟da, sersem fide hastalığı denen bu hastalığa Ascomycetes türü olan Gibberella fujikuroi isimli mantarın sebep olduğunu buldu. 1930‟lu yıllara kadar, fungusun giberellin adı verilen (Gibberella fujikuroi türüne itafen) bir kimyasal salgılayarak pirinç gövdelerinin aşırı uzamasına neden olduğunu buldular. Araştırmacılar, 1950‟lerde bitkilerinde giberellinleri sentezlediklerini keşfettiler. Her ne kadar sayıları her bir bitki türünde çok daha az ise de, bilim adamları son 40 yılda bitkilerde doğal olarak sentezlenen 100‟den fazla giberellin bulmuşlardır. Bunlar GA1,GA2,GA3…. şeklinde isimlendirlirler. En yaygın olanı ise GA3 yani giberellik asit (giberellan çekirdek)‟tir. Diğer giberellinler bu temel yapıya bağlı çeşitli yan gruplara sahiptir. Giberellin Biyosentezi ve Metabolizması Giberellin sentezi, bitkide asetil-KoA‟nın asetil biriminden başlar. Solunumdan kaynaklanan mevalonik asit yoluyla birkaç reaksiyondan sonra giberellin sentezlenir. Giberellinler diterpenler grubundadır. Giberellin sentezinin kaurenik aside kadar sitopolazmada, ancak giberellinlerin birbirine dönüşümünün kloroplastlarda olduğu bilinmektedir. 20 karbonlu kauren tüm gibberellinlerin çıkış noktasıdır. Piyasada giberellin antagonisti (büyüme engelleyici) olarak satılan Fosfon-D, Amo-1618, CCC gibi sentetik engelleyiciler giberellin sentezinin belirli reaksiyonlarını inhibe ederler. Bitkide genç yapraklarda ve daha çok tohum embriyosunda sentezlenirler. Buralardan bitkinin diğer kısımlarına taşınırlar. Çimlenen tohumlarda floem vasıtasıyla fideye taşınan giberellinlerin, genç yapraklardan diğer kısımlara hangi yolla taşındığı çelişkilidr. Daha çok floem dışıyollarla korteks ve öz parankimasından difüzyonla taşındığı düşünülmektedir. Dolayısıyla giberellinlerin taşınımı oksin taşınımı gibi polar olmayıp, olasılıkla, her yönde aynı hızdadır. Giberellinler sentezlendikten sonra çok yavaş parçalanırlar. Giberellinleri parçalayan enzimler bilinmemektedir. Giberellinler şekerlerle veya proteinlerle birleşerek inaktive olurlar. Ayrıca aktif olan giberllinler daha az aktif giberellinlere kolayca dönüşebilmektedir. Örneğin, GA4‟ün daha az aktif GA34‟e dönüşümü çok sık gerçekleşir. Giberellinlerin Fizyolojik Etkileri ve Pratik Değeri Gövde Uzaması Giberellinler esas olarak kökler ve genç yapraklarda üretilir. Giberellinler hem yapraklarda hem de gövdelerde büyümeyi teşvik etmekle birlikte, kök büyümesi üzerinde çok az etkiye sahiptir. Giberellinler, gövdelerde hücre uzamasını ve hücre bölünmesini uyarır. Oksinler gibi giberellinler de hücre gevşemesine neden olurlar. Ancak bunu çeperi asitleştirerek yapmazlar. Bir varsayıma göre, giberellinler hücre çeperi gevşetici enzimleri uyarmaktadır. Bu enzimler hücre çeperine ekspansinlerin girişini kolaylaştırmaktadır. Böylece, büyüyen bir gövdede uzamayı artırmak için oksin ve sitokininle birlikte hareket etmektedir. Bu süreçte, oksin hücre çeperini asitleştirmekte ve ekspansinleri aktifleştirmekte; giberellinler ise ekspansinlerin girişini kolaylaştırmaktadır. Cüce bitkilere (mutantlar) giberellin uygulanarak, giberellinlerin gövde uzamasına artırıcı etkisi ortaya konmuştur. Örneğin, bazı cüce bezelye bitkilerine (Mendel‟in çalıştığı türler dahil) giberellin uygulanırsa, çoğunlukla yanıt alınmaz. Çünkü, bu bitkiler önceden optimum dozda hormon üretmişlerdir. Çiçek sapının hızla büyümesi giberellinin teşvik ettiği gövde uzaması ile ilgili en dikkat çekici durumdur. Lahana benzeri bitkiler vejetatif evrede rozet formundadırlar: yani çok kısa internodyumlu oluşları nedeniyle toprağa çok yakındırlar. Bitki üreme evresine geçince; giberellinlerin artması internodyum uzamasını hızla artırır. Bunun sonucunda gövde uçlarındaki çiçek tomurcuklarının boyu uzar. Meyve Büyümesi Pek çok bitkide, meyve bağlanması için hem oksin hem de giberellinlerin bulunması gerekir. Giberellinlerin en önemli ticari uygulaması, Thompson isimli çekirdeksiz isimlere püskürtülmesidir. Hormon, tüketicilerin istediği biçimde, üzüm tanelerinin büyümesini ve salkımların internodyumlarının uzamasını sağlar. Taneler arasında hava dolaşımını artırdığından, diğer meyvelerin ve diğer mikroorganizmaların hastalık bulaştırıcı etkisi de azalır. Çimlenme Tohum embriyoları, zengin bir giberellin kaynağıdır. Suya batırıldıktan sonra, embriyodan serbest bırakılan giberellinler dormansinin kırılması ve çimlenmenin başlaması için tohuma sinyal gönderir. Çimlenme için ışık yada düşük sıcaklık gibi özel ortam koşullarına gereksinim duyan bazı tohumlara giberellin uygulanması durumunda dormansi kırılır. Giberellinler depo besin elementlerini mobilize eden α – amilaz gibi sindirici enzimlerin sentezini teşvik ederek tahıl fidelerinin büyümesini destekler. Ayrıca giberellinler çiçeklenme hormonu olarak bilinir. Bir çok bitkide çiçeklenmeyi teşvik eder. Gerek fotoperyodizmle gerekse vernalizasyonla çiçek açmada giberellinler rol alırlar. ABSİSİK ASİT : Stres Hormonu Absisik asit (ABA) kimyasal grup olarak seskuiterpenler grubundan bir maddedir. ABA‟nın giberellinlerle ortak noktası her ikisinin de ana grup olarak terpenlerden olmalarıdır. ABA bitkiler tarafından sentezlenen en önemli engelleyici hormondur. Tomurcuk dormansisinden önce ortaya çıkan kimyasal değişiklikleri çalışan bir araştırma grubu ve yaprak absisyonundan (son baharda yaprak dökülmesi) önce ortaya çıkan kimyasal değişiklikleri çalışan bir diğer ekip, 1960‟da, aynı bileşiği yani absisik asiti (ABA) izole etmiştir. Aynı yıllarda başka araştırma grupları akça ağaç ve baklada da ABA‟yı izole ettiler. Daha sonrayapılan çalışmalarda ABA‟nın ciğer otları, algler, bakteriler ve mantarlar dışında genel olarak bitki aleminde mevcut olduğu tespit edildi. ABA bulunmayan bitkilerde başka engelleyicilerin bulunduğu düşünülmektedir. Diğer açıdan işin garip tarafı ise, şu anda, ABA‟nın ne tomurcuk dormansisinde ne de yaprak absisyonunda önemli bir rol oynamadığı düşünülmektedir; fakat ABA bir çok etkiye sahip önemli bir bitki hormonudur. Şu ana değin incelediğimiz oksin, sitokinin ve giberellinlerin aksine, ABA büyümeyi yavaşlatıcı etki gösterir. Genel olarak büyüme hormonlarının etkilerine zıt etki yapar. Bir yada daha fazla büyüme hormonuna ABA oranı, fizyolojik etki gösterecek sonucu belirler. ABA Biyosentezi ve Metabolizması ABA 15 karbonlu bir seskuiperten olup kloroplastlarda ve diğer plastidlerde mevalonik asit yoluyla sentezlenir. Kaynaklandığı öncül maddenin bir ksantofil karotenoidi olan vialoksantin‟in fotokimyasal veya enzimatik yıkımıyla başladığı belirtilmektedir. (bu yol izopentil difosfat (IPP) la başlar ve C40 ksantofili olan vialoksantinle devam eder). Bu yıkımın ilk ürünü ksantoksin‟dir ki bununda bir engelleyici madde olduğu ve fototropizmada rol oynadığı ileri sürülmektedir. ABA‟nın inaktivasyonu ya karboksil grubuna bir glukoz bağlanmasıyla yada faseik asit ve dihidro fasetik asit‟e oksitlenmesiyle olmaktadır. ABA‟nın bitkide başlıca sentez yerleri yaşlı yapraklar, gövde ve yeşil meyvalardır. Tohumlarda da sentezlendiği bazı bitkilerde ise tohumlara başka yerlerden taşındığı düşünülmektedir. ABA’nın taşınımı giberellin taşınımına benzer. Hem ksilemden hem floemden taşındığı gibi parankima hücrelerinden difüzyonla da her yönde taşınabilir. Kuraklıkta, tuzlulukta, mineral eksikliği gibi çeşitli stres şartlarında yaprakta ABA sentezi artar. ABA‟nın bu ekstrem koşullarda bitkiye dayanıklılık sağladığı düşünülmektedir. Kuraklık stresinde ABA‟nın stomaların kapanmasına yol açtığı ve böylece transpirasyonla su kaybınıo azalttığı bilinmektedir. ABA’nın Fizyolojik Etkileri ve Pratik Değeri Tohum Dormansisi Tohum dormansisi, yaşamın sürmesinde büyük önem taşır; çünkü dormansi tohumun optimum ışık, sıcaklık ve nemlilik koşullarında çimlenmesini sağlar. Sonbaharda çevreye yayılan bir tohumun, kış koşullarında ölmesini engelleyecek şekilde, hızla çimlenmesini önleyen nedir? Bu tür tohumların ilkbaharda çimlenmesini hangi mekanizmalar sağlar? Hatta, meyvenin nemli iç ortamında, karanlıkta, tohumların çimlenmesini engelleyen nedir? Bu soruların yanıtı ABA‟dır. Tohum olgunlaşması sırasında ABA düzeyi, 100 kat artabilir. Olgunlaşan tohumlardaki yüksek ABA düzeyi, çimlenmeyi engeller ve özel proteinlerin üretimini teşvik eder. Bu proteinler, olgunlaşmayla birlikte oluşan aşırı su kaybına karşı tohumun ayakta kalmasına yardım eder. ABA, bazı yollarla yok edilir yada etkisizleştirilirse, tohumlar çimlenir. Bazı çöl bitkilerinin tohumlarında dormansi, sadece şiddetli yağmurların ABA‟yı tohumdan yıkayarak uzaklaştırmasıyla kırılır. Diğer tohumlar ise ABA‟nın etkisizleştirilmesi için ışığa yada uzun süren düşük sıcaklığa gereksinim duyar. Çoğunlukla ABA‟nın giberelline oranı, tohumun uyku halinde kalıp kalmayacağını yada çimlenip çimlenmeyeceğini belirler; çimlenme için suya daldırılmış tohumlara ABA ilave edilirse, tohumlar yeniden dormansi koşullarına döner. Tohumlar henüz koçan içindeyken çimlenen bir mısır mutantı, işlevsel bir transkripsiyon faktöründen yoksundur; bu transkripsiyon faktörü belirli genlerin ifade edilmesini sağlamak için ABA‟ya gereksinim duyar. Kuraklık Stresi ABA, bitkilerin kuraklığa karşı koymasını sağlayan asıl iç sinyaldir. Bir bitki solmaya başlayınca yapraklarda ABA birikerek stomaların hızla kapanmasını sağlar. Bunun sonucu transpirasyon (buharlaşmayla su kaybedilmesi) azalır ve su kaybı önlenir. ABA bekçi hücrelerinin (stomalarda bekçi ve arkadaş hücreleri ile birlikte bir por bulunur) plazma zarındaki dışa doğru yönelmiş potasyum (K+) kanallarının açılmasını artırır. Bunu, kalsiyum gibi sekonder mesajcıları etkileyerek yapar. Potasyum kanallarının açılmasıyla, bekçi hücrelerinden büyük miktarda potasyum çıkışı olur. Suyun ozmotik olarak kaybı, bekçi hücrelerinin turgorunun azalmasına ve stoma porunun küçülmesine neden olur. Bazı durumlarda su kıtlığı kök sistemini gövde sisteminden daha önce baskı latına alır. Köklerden yapraklara taşınan ABA, erken uyarı sistemi olarak iş görür. Solgunluğa özellikle duyarlı mutantlar genelde ABA üretemezler. Ayrıca, ABA‟nın hücrede RNA ve protein sentezini engelleyici etkisininde olabileceğine dair deneysel veriler vardır. ABA‟nın pratik kullanımı çok nadirdir. Tahıllarda dane verimini artırmak ve yatmaya karşı mukavemet kazandırmak için, bazı durumlarda da sormansi süresini uzatmak ve çeşitli stres şartlarına karşı bitkiye dayanıklılık sağlamak için kullanılır. ABA pahalı ve kolayca katabolize olduğu için bunun yerine fosfon-D kullanılmaktadır. ETİLEN : Gaz Hormon Kömür gazının bahçe ışıklandırılmasında kullanıldığı 19. yüzyılda, gaz lambalarından çıkan aydınlatma gazı sızıntısı çevredeki ağaçların yapraklarını erkenden dökmelerine neden olmuştur. Dimitri Neljubow isimli bir Rus bilim adamı, 1901‟de aydınlatma gazındaki aktif faktörün etilen gazı (C2H4) olduğunu göstermiştir. Ayrıca etilenin bitkiler tarafından sentezlenen (üretilen) bir hormon olduğu, ve bununla birlikte, etilen miktarının ölçümünü basitleştiren gaz kromatografisi tekniği geliştirilince yaptığı iş önemli ölçüde kabul görmüştür. Bitkiler, kuraklık, su baskını, mekanik basınç, zarar ve enfeksiyon gibi streslere yanıt olarak etilen üretir. Aynı zamanda meyve olgunlaşması ve programlanmış hücre ölümü sırasında etilen üretilir. Ayrıca dıştan yüksek konsantrasyonlarda oksin uygulanmasından sonrada etilen üretilmektedir. Dikkat çekici olan bir diğer noktada; daha önce kök uzamasının engellenmesi gibi, oksinle ilişkilendirlen bir çok biyolojik etkinin, şu an oksinin uyardığı etilen üretimine bağlı olduğudur. Etilen Biyosentezi ve Metabolizması 1970‟li yıllarda etilen sentezinin bitkide metionin amino asitinden kaynaklandığı belirlendi. Metionin‟den amino siklopropan karboksilik asit (ACC), ondanda dekarboksilasyon ve deaminasyonla etilen oluşmaktadır. Etilen sentezinin ACC üzerinden olduğunu, avokado meyvesinin hasatından sonra olgunlaşmasında meyvede ACC ve etilen konsantrasyonlarının pozitif korelasyonlu değişim göstermeleri doğrulamıştır. Amino etoksivinil glisin (AVG) ve aminooksi asetik asit (AOA) bileşiklerinin etilen sentezini inhibe ettikleri bilinmektedir. CO2 gazıda yüksek konsantrasyonlarda etilen üzerinde inhibisyon gösterir. Depolanırken olgunlaşması istenmeyen meyvelere CO2 gazının inhibisyon etkisi uygulanır. Gümüş iyonları ve bazı maddelere etilenin bağlanmasıyla, etilen sentezi inhibe edilir. Etilenin Fizyolojik Etkileri ve Pratik Değeri Mekanik Strese verilen Üçlü Yanıt: Bir Sinyal İletim Yolunun İncelenmesinde Mutantların Kullanılması Kaya gibi hareketsiz bir nesnenin altında kalmış ve topraktan yukarıya doğru yükselmeye çalışan bir bezelye fidesini düşünelim. Gövde üstündeki engeli ittikçe, narin yapılı uç bölge mekanik strese maruz kalır,. Bu, fideyi etilen üretmeye teşvik eder. Etilen ise fideyi üçlü yanıt olarak adlandırılan bir büyüme manevrası yapmaya teşvik eder. Bu manevra fidenin engeli aşmasını sağlar. Şekil 19‟da görebileceğiniz bu yanıt gövde uzamasının yavaşlaması, gövdenin kalınlaşması (dayanıklılığı artırır) ve gövdenin yatay olarak büyümesine neden olan bir eğrilme olmak üzere üç kısımdan oluşur. Gövde büyümeye devam ettikçe ucu nazikçe yukarıya dokunur. Eğer bu yoklama sonucu yukarda katı bir cisim olduğunu saptarsa yeniden etilen üretir ve gövde yatay olarak büyümeye devam eder. Bununla birlikte, eğer fidenin uç kısmı katı bir cisim algılamazsa etilen üretimi azalır ve normal olarak yukarı doğru büyümesini sürdürür. Gövdenin yatay olarak büyümesini fiziksel engelden ziyade etilen teşvik eder; ayrıca, fiziksel bir engelle karşılaşmaksızın serbestçe büyüyen fidelere dıştan etilen uygulanması, üçlü yanıttın oluşmasına neden olmaktadır (Şekil 19). Araştırmacılar bu yanıtta yer alan sinyal iletim yollarını araştırmak için anormal üçlü yanıt veren Arabidopsis mutantları üzerinde çalışmışlardır. Etilene duyarsız (ein) mutantlara etilen uygulanınca bu bitkiler üçlü yanıt verememişlerdir. İşlevsel bir etilen reseptörüne sahip olmadıklarından bazı ein mutant tipleri, etilene duyarsızdırlar. Diğer mutantlar ise, toprak dışında, fiziksel bir engelin bulunmadığı hava ortamında bile üçlü yanıt vermişlerdir. Bu tip mutantların bazılarında düzenleyici bir bozukluk bulunur. Bu bozukluk böyle mutantların 20 kat daha fazla etilen üretmelerine neden olur. Bu tür aşırı etilen üreten (eto) mutantlarda fenotip, fidelere etilen sentezi inhibitörleri uygulanmasıyla iyileştirilebilir. Üçüncü tip mutantlar hava ortamında bile üçlü yanıt verirler; ancak, üçlü yanıt (ctr) mutantları olarak adlandırılan bu mutantlar etilen sentezi inhibitörlerine yanıt vermezler. Bu durumda, etilen mevcut olmasa bile etilen sinyal yolu işlevini sürdürür. ctr mutantlarından etkilenen bir gen, bir protein kinazı kodlamak için açılır. Bu mutasyonun etilene verilen yanıtı aktifleştirmesi, yabani-tip allelin normal kinaz ürününün, etilen sinyal iletim işleminin negatif bir düzenleyicisi olduğunu düşündürmektedir. Yabani tip bitkilerde bu yolun nasıl çalıştığına ilişkin bir varsayım aşağıda verilmiştir: Etilenin etilen reseptörüne bağlanması kinazı aktif hale getirir. Bu negatif düzenleyicinin inaktif hale gelmesi üçlü yanıt için gerekli proteinlerin sentezlenmesini sağlar. Şekilde verildiği gibi; bu yolda iki membran proteini, bir engelleyici protein (CTR1), bir de transkripsiyon faktörü olan protein (EIN3) vardır: (eğer etilen varsa) ilki etilen reseptörü (ETR1) ve ikincisi bir kanal proteini olan (EIN2) dir. EIN2 bir sekonder mesajcıya etki eder ve buda bir transkripsiyon faktörü olan EIN3‟ü aktive eder. EIN3 etilen etkisini üretmek üzere ifade olacak genleri harekete geçirir. Eğer etilen yoksa; etilen reseptörü olan ETR1 inaktif kalır ve CTR1‟i inaktif edemez. Aktif kalan CTR1, membran proteini olan EIN2‟yi inaktif tutar. EIN2 nin aktivitesi olmayınca transkripsiyon faktörü olan EIN3 inaktif kalır ve nukleusta herhangi bir etki gösteremez. Apoptosis: Programlanmış Hücre Ölümü Bir yaprağın sonbaharda döküldüğünü yada tek yıllık bir bitkinin çiçek verdikten sonra öldüğünü düşünün. Yada içerdiği canlı maddenin parçalanması sonucu, içi boşalan bir trakenin farklılaşmasındaki son basamağı düşünün. Bu olayların tümü, belirli hücrelerin veya organların yada tüm bitkinin programlanmış ölümünü kapsar. Belirli bir zamanda ölmek için kalıtsal olarak programlanmış hücreler, organlar ve bitkiler, basitçe hücresel mekanizmayı kapatıp ölümü beklemez. Bunun yerine apoptosis olarak adlandırılan programlanmış hücre ölümünü yaparlar. Bu, bir hücrenin yaşamında en yoğun olduğu süreçlerden biridir. Apoptosis esnasında yeni genlerin ifade olmasına gerek duyulur. Bu sırada oluşan yeni enzimler, klorofil, DNA, RNA, proteinler ve zar lipitleri dahil pek çok kimyasal bileşeni parçalar. Bitki parçalanma ürünlerini kurtarabilir. Hücrelerin, organların yada tüm bitkinin apoptosisi sırasında etilen patlaması yaşanır. Yaprak Absisyonu Her sonbaharda yaprakların dökülmesi bir adaptasyondur. Kökten kışın topraktan su absorblayamadığından, bu adaptasyon kış aylarında yaprak döken ağaçların kurumasını önler. Yapraklar dökülmeden önce, ölmekte olan yapraklardan pek çok önemli element geri kazanılarak gövdenin parankima hücrelerinde birikir. Bu besin elementleri, bir sonraki bahar ayında gelişmekte olan yapraklar tarafından yeniden kullanılır. Sonbaharda tekrar üretilen kırmızı pigmentler ve yaprakta önceden bulunan, ancak sonbaharda koyu yeşil klorofilin parçalanmasıyla görünür hale gelen sarı ve turuncu karoteneyidler, yapraklara sonbahar rengini verir. Bir sonbahar yaprağı dökülünce, petiyolün kaidesinin yakınında bir absisyon tabakası oluşur. Daha sonra yaprak buradan koparak yere düşer. Absisyon tabakasındaki küçük parankima hücreleri çok ince çeperli olup, iletim demetlerinin çevresinde lifler bulunmaz. Hücre çeperlerindeki polisakkaritler daha da zayıflar. Sonuçta, rüzgarın da etkisi ile yapraktaki ağırlık absisyon tabakasının kopmasına neden olur. Hatta yaprak dökülmeden önce, absisyon tabakasının dala bakan tarafında mantar tabakası bir iz oluşturur. Bu iz bitkiyi patojenlere karşı korur Absisyonu, etilen ve oksin dengesindeki değişiklik kontrol eder. Yaşlanan bir yaprak, giderek daha az oksin üretir. Bu, absisyon tabakasındaki hücrelerin etilene karşı duyarlılıklarını artırmaktadır. Etilenin absisyon tabakası üzerindeki etkisi arttıkça, selülozu ve hücre çeperlerinin diğer bileşenlerini parçalayan enzimler üretilmektedir. Meyve Olgunlaşması Meyveler, çiçekli bitkilerde tohumların yayılmasına yardım eder. Ekşi, sert ve yeşil olan olgunlaşmamış meyveler, tohum olgunlaşması esnasında yenilebilir hale gelir. Meyvede etilen üretiminin patlaması, enzimatik olarak bu olgunlaşmayı tetikler. Hücre çeperi bileşenlerinin enzimatik olarak parçalanması ve nişastaların ile asitlerin şekerlere dönüşümü meyveyi tatlandırır. Yeni kokuların ve renklerin üretilmesi, olgunlaşan meyvenin, bu tohumları yiyen ve dağıtan hayvanları cezp etmesine yardım eder. Olgunlaşma sırasında bir zincir reaksiyonu ortaya çıkar; etilen olgunlaşmayı tetikler, olgunlaşmada etilen üretiminin artmasına neden olur. Bu, fizyolojide pozitif geri beslenmenin nadir örneklerinden biridir. Sonuçta etilen üretiminde dev bir patlama meydana gelir. Hatta etilen bir gaz olduğundan, olgunlaşma sinyali bir meyveden diğerine geçer; geçerken de çürük bir elma bir kasa elmayı çürütebilir. Eğer yeşil bir meyve satın alırsanız, meyveleri plastik bir torbada tutarak olgunlaşmayı hızlandırabilirsiniz. Çünkü plastik torba içinde etilen gazı birikir. Ticari amaçlı olarak, meyvelerin çoğu etilen gazı düzeyleri artırılmış dev depolarda olgunlaştırılır. Diğer durumlarda ise doğal etilenin sebep olduğu olgunlaşmayı geciktirmek için önlem alınır. Örneğin, elmalar karbondioksit içeren depolarda tutulur. Hava sirkülasyonu etilen birikimini önler ve yeni etilen sentezi engellenir. Sonbaharda toplanmış ve bu şekilde depolanmış elmalar, yaz aylarında bile satışa sunulabilir. Etilenin, meyvelerin hasat sonrası fizyolojilerindeki önemi düşünüldüğünde, etilen sinyal iletim yolları ile ilgili genetik mühendisliğin potansiyel olarak ticari önemi büyüktür. Örneğin, moleküler biyologlar isteğe bağlı olarak olgunlaşan domates meyveleri üretmiştir. Bunu, etilen sentezinde gerekli genlerden birinin transkripsiyonunu durduran bir antisens RNA yerleştirerek yapmışlardır. Yeşil haldeyken toplanan bu tür meyveler, etilen gazı verilmediği taktirde olgunlaşmayacaktır. Bu tür yöntemlerin geliştirilmesi meyve ve sebzelerin çürümesini önleyecektir. Bu sorun, şu an birleşik devletlerde ve bazı ülkelerde hasat edilen ürünün yarısına yakın kısmını yok etmektedir. BRASSİNOSTEROİDLER Brasinosteroidler büyümeyi teşvik edici karakteristik aktiviteleri ile, bitki hormonlarının yeni bir grubudur. 1979‟da kolza bitkisi (Brassica napus L.) poleninden izole ve karakterize edilmişlerdir. Sonradan 44 bitkide bundukları rapor edilmiş ve bitki aleminde muhtemelen her yeder bulundukları kabul edilmiştir. Brassinosteroidler, 37 Angiosperm (9 monokotil ve 28 dikotil), 5 Gimniosperm, 1 pteridofit ve 1 alg olmak üzere 44 bitki türünde izole edilmişlerdir. Brassinosteroidler, çok düşük konsantrasyonlarda etki gösterirler. Brassinosteroidler, büyüme gibi çeşitli gelişimsel etkileri , tohumların germinasyonu, rizogenez, çiçeklenme ve senesens gibi pleotropik etkileriyle dikkate alınmıştır. Ayrıca, çeşitli abiyotik stres durumlarına karşı da bitkiye dayanıklılık sağlamaktadırlar. Brassinosteroidlerin Biyosentezi ve Metabolizması 1974‟te ilk brassinosteroid olan brassinolid keşfedildi. Biyolojik olarak aktif olan bu bitki büyüme düzenleyicisi bir steroid lakton olarak C28H48O6 (MA: 480) formülü ile desteklendi. 1982‟de büyümeyi destekleyici, diğer bir steroid madde, kestane (Castenea crenata) üzerinde böcekler tarafından tahrip edilen kısımlardan izole edildi ve kastesteron (castesteron) olarak adlandırıldı. Brassinolid ve castesteronun keşfi, bitki aleminde büyümeyi destekleyici steroid hormonlarının varlığı düşüncesini desteklemiştir. Brassinosteroidler, doğal polihidroksi steroidlerin yeni bir grubudur. Şimdiye kadar tanımlanan doğal brassinosteroidler genel bir 5α-kolestan yapısına sahiptirler ve bunların varyasyonları yapı üzerindeki işlevlerinin çeşit ve oryantasyonundan oluşmaktadır. Fitosterol ailesine ait bileşikler C27, C28, C29 brassinosteroidler olarak sınıflandırılır. Şu ana kadar 42 brassinosteroid ve 4 brasinosteroid bileşiği karakterize edilmiştir. Brassinosteroidler BR1, BR2, …BRn şeklinde isimlendirilirler. Bitki steroidleri asetil Ko-A, mevalonat, izopentenil pirofosfat, geranil pirofasfat ve farnesil pirofosfattan, isoprenoid yolla sentezlenirler. Mevalonatla başlayan bu yol sonunda sikloartenol sentezlenir. Bu doğal yolun dışında, sentetik olaraktan kampesterol‟den brasinoid‟e kadar sentetik bir yolla sentezlenebilirler. Bitkide gelişmekte olan dokular, olgun dokulşara göre daha fazla konsantrasyonlarda brassinosteroidleri içerirler. Polen ve genç tohum zengin brassinosteroid kaynağıdır. Yapraklar ve sürgünler düşük konsantrasyonlarda brassinosteroid içerirler. Brassinosteroidlerin Fizyolojik Etkileri ve Pratik Değeri Brassinosteroidlerin analizinde göze çarpan iki test vardır; birincisi, fasulyede ikinci internod oluşumu testi ve diğeri pirinç laminasında eğilme testidir. Fasulyede ikinci intenod oluşumu testi, brassinolidin kolza bitkisinden izolasyonunda geliştirilmiştir. Fasulye fidesindeki ikinci internod kesilip, lanolin macunuyla brassinolid uygulanmasıyla uzama, eğilme, şişme ve iki ayrı parçaya ayrılma (splitleşme) göstermiştir. Uzama, eğilme ve şişme düşük konsantrasyonda, iki ayrı parçaya ayrılma ise yüksek konsantrasyonda gerçekleşmiştir. Bu, brasinosteroidlerin büyümeye etkilerinden biridir. Brassinosteroidler genç vejetatif dokuların gelişimine etki ederler. Soya fasulyesi ve bezelye epikotillerinde, Arabidopsis pedinkullarında, yulaf koleoptillerinde uzamayı ve büyümeyi teşvik ederler. Kök gelişimini engellerler fakat gövde gelişimini teşvik ederler. Hücre bölünmesini ve uzamasını, polen tübü uzamasını teşvik ederler. Yaprak absisyonunu geciktirler (Citrus) ve ksilemde farklılaşmayı artırırlar. İletim demetlerinin farklılaşmasında rol alırlar. Tohum germinasyonunu teşvik eder, aynı zamanda absisik asitin inhibe edici etkisini yok ederler. Brassinosteroidler üzüm meyvelerine spreyle muamele edildiğinde; sonbaharda çiçek sayısını artıran, kışın (aynı muamele yapıldığında) çiçek sayılarını azaltan etki göstererek çiçeklenmede rol oynarlar. Brassinosteroidler, Xanthium gibi bazı cinslerde senesensi hızlandırırlar. Ayrıca bitkilerin abiyotik stres şartlarına karşı dayanıklığını artırırlar; düşük sıcaklığa maruz kalan pirinç ve domates bitkilerinde brassinosteroid uygulamasıyla büyümenin daha iyi olduğu gözlenmiştir; mısır ve lahana fidelerinde de düşük sıcaklık stresine karşı toleransı artıran etki gösterirler. Bu etkilerin oksin etkilerine çok benzemesinden dolayı brassinosteroidlerin, oksinden farklı bir hormon olarak kabul edilmesi yıllar sürmüştür. Ek olarak brasinosteroidler kimyasal yapı olarak hayvanlarda bulunan steroid hormonlarına en benzer gruptur; bitki ve hayvan steroid hormonlarının benzer kimyasal yapıları, belirli genlerin ifade olmasında benzer etkiler göstermektedir. Şöyle ki; bitki steroidleri insanlardaki eşey hormonları gibi, aynı olan pek çok şeyi yaparlar. Bir bitkide steroid fazla olduğunda, o bitki daha büyük, daha dayanıklı ve daha kuvvetli olmaktadır. Örneğin; mutasyon nedeniyle bitkiler steroid üretmediklerinde cüceleşirler. Steroidler aynı zamanda bitkide eşeyli üremeyi düzenlemektedirler (burada; belirli bir molekül grubunun farklı organizmalarda sinyal molekülleri olarak iş görmesi ilginçtir). Bir bitkinin steroid sentezlemek için kullandığı enzimlerin çoğu, kendi steroid çeşitlerini üreten hayvanlarda da bulunmaktadır. Dolayısıyla bu enzimlerle ilgili bazı genlerin, bitkiler ve hayvanların bir milyar yıldan daha uzun bir süre önce ortak bir atadan dallanmaları sebebiyle korunmuş olma olasılığı vardır. Buna karşın, steroidlere yanıtlarla ilgili sinyal yolundaki moleküller, bitki ve hayvanlarda çok büyük bir farklılık göstermektedir. KAYNAKLAR Purves, Sadava ve arkadaşları, Life – The Science of Biology, 7inci baskı. Campbell ve Reece, Biology, 6ncı baskı. Salisbury ve arkadaşları, Plant Physiology. Taiz ve Zeiger, Plant Physiology, 3üncü baskı. Ram Rao S. ve ark., Brassinosteroids – A new class of phytohormones, Current Science, Vol. 82, No. 10, 2002. Haydarabad, Hindistan. Kocaçalışkan İ., Bitki Fizyolojisi, Dumlupınar Üniversitesi www.pubmedcentral.nih.gov 4e.plantphysiol.org www.whfreeman.com www.hhmi.org

http://www.biyologlar.com/giberellinler-bitki-boyu-duzenleyicileri

Zigotun Yarıklanması

Zigotun peş peşe mitozla bölünmesi sonucu yeni hücrelerin oluşması olayına yarıklanma denir. İlk mitoz bölünme sonucu oluşan iki yavru hücreye blastomer denir. Zigot 12-16 blastomerlik döneme ulaştığında, görünümü duta benzediğinden morula adı verilir. Döllenmeden bu yana 3 gün geçmiştir. Morula uterusa ulaştıktan sonra yapısında değişmeler başlar. Ortasında sıvı toplanır, hücreler kenara doğru itilir. Bir grup blastomer yassılaşarak kenara doğru itilirken, diğer bir grup bir noktada kitle halinde kalır. Bu yapı taşlı yüzüğe benzetilebilir. Yüzüğün halkasını oluşturan yassı hücrelere Trofoblast ya da dış hücre kümesi, yüzüğün taşını oluşturan yuvarlak hücre kümesine de embriyoblast ya da iç hücre kümesi denir. Embriyoblastlardan embriyo, trofablastlardan ise plasenta ve memranlar gelişecektir. 1-2 haftalık olan bu oluşuma blastosist adı verilir. Bütün bu değişme ve farklılaşmaları geçirerek uterus boşluğuna inen hücrelere embriyo denir. Fertilizasyondan yaklaşık 7 gün sonra embriyo uterus duvarına yerleşir (gömülür), bu olaya implantasyon adı verilir. Bu yerleşme uterusun fundus kısmının ön ya da arka duvarında olur. İmplante ovumun çevresini saran ve corpusluteumdan salgılanan progesteron hormonunun etkisi altında olan endometriumda, büyük değişiklikler meydana gelir. Stroma hücreleri büyür, grandlar kalınlaşır ve uzar. Gebelikte bu yapıdaki endometrium desidua adını alır. Bu sırada trofoblast hücrelerinden proteolitik (protein yıkıcı) ve sitolitik (hücre yıkıcı) enzim salgılanır. Bu enzimleri gland ve troma hücrelerini yıkarak implantasyon sürecinin devamını sağlarlar. Ovumun üzerini örten desiduaya Desidua kapsularis, altındakine Desidua basalis, uterusu saran desuduaya da Desidua vera denir. İmplantasyon sırasında ovum, desidual maddeleri absorbe ederek, beslenmesini sağlar. Daha sonra beslenme meterrel kan yoluyla olur. İmplantasyondan sonra trofoblastların hızla çoğalmasıyla üç tabaka şekillenir. Dış veya sirisityotrofoblast tabakası, iç veya sitotrofoblast tabakası ve ince bir bağ dokusu olan mesoblast. Mesoblast tabakasından, plasentanın destek dokuları ve damar sistemi şekillenir. Sinsityal hücrelerden, embriyonun beslenmesi için glikoz ve protein sentez edilir. Aynı zamanda implantasyondan hemen sonra, bu hücre dizisinden Karyonik Gonodotrop hormonu da salgılanır. Bu hormon korpus luteumun devamını dolayısıyla estrojen ve progesteron salgılanmasını sağlayarak, endometriumun yıkılmasını önler. Sitotrofoblastan ileride plasenta şekillenecektir. 8. Gün 7. günün sonunda embriyoblastın blastosel boşluğuna bekan iç yüzündeki bir grup hücre farklılaşarak tek sıralı kübik hücrelerden oluşan hipoblast tabakası oluşur. Hipoblast üzerinde yine embriyoblastan farklılanan tek sıralı ve yüksek plazmatik hücrelerden epiblast tabakası oluşur. Hipoblast ve epiblast tabakaları yassı birer disk oluşturarak birlikte iki laminalı embriyon diskini oluşturur. Embriyoblast ve sitotrofoblast arasında amniyon boşluğu oluşmaya başlar.(Epiblast hücreleri içerisinde). 9. Gün Blostosist endometriuma tam olarak gömülmüştür. Gömülme yeri fibrin tıkaçla kapatılmıştır. Amniyon boşluğu daha da gelişmiştir. Hipoblast hücreleri Hauser zarını oluşturmak üzere blastosist boşluğunu döşüyorlar. Oluşan boşluğa ekzosolom boşluğu (Yolk-Sak) denir. Sinsityotrofoblast tabakasında laküne denen boşluklar oluşur. Laküne içerisinde sinsityotrofoblast etkisiyle yırtılmış damarlardan ortaya çıkan kan ve bezlerden oluşan salgıyla doludur. 10. Gün Lakünalar birleşmeye başlar. Sitotrofoblast kökenli bir grup hücre stotrofoblast tabakası ile amniyon ve ekzosolom boşluğu arasında çoğalarak ekstra embriyonik mezoderm denilen gevşek bir doku oluşturur. Amniyon boşluğu, emniyon kesesi; eksosolom boşluğu, primer vitellus kesesi adını alır. 11-12. Gün Sinsityotrofoblastların kemirici işlevleriyle çevre damarlardaki anne kanı bu lakünalar ağına akar ve dolanmaya başlar. Böylece ilkel uteroplasental dolaşım başlamış olur. 12. günde ekstraembriyonik mezoderm tabakasında yer yer boşluklar izlenir. 13. Gün İmplantasyon bölgesine yakın lakünalardan uterus boşluğuna bazen kan sızar, buna implantasyon kanaması denir. Ekstraembriyonik mezoderm içerisindeki boşluklar birleşerek koryon boşluğunu oluşturur. Amniyon ve vitellus keselerinin koryona yapıştığı kısma bağlantı sapı denir. Anne ve embriyo arasındaki bağlantıyı sağlayan parmak şeklinde oluşumlar meydana gelir. Bunlara koryon villusları denir. 13. günde sekonder (kalıcı) vitellus kesesi gelişir. Primer vitellus kesesi boğumlanarak, abembriyonel kutupta, koryon boşluğunda ekzosölomik kistler adı verilen küçük parçalara ayrılır. 14. Gün Sekonder vitelluskesesi gelişmesini tamamlar ve ekzosölomik kistler ile irtibatını keser (1). Embriyonun kaudal ve kranial bölümleri belirginleşir. Bağlantı sapının bulunduğu taraf kaudal kısım, diğer taraf kronial kısımdır. Üçüncü Haftada Gelişen Önemli Yapılar Şunlardır: 1. Haftada hipoblast, 2. haftada da epiblast oluşmuş ve iki laminalı embriyon diskinin meydana gelmesinden sonra, 3. haftada hipoblast ve epiblast tabakalarının arasında üçüncü bir tabaka olan mezoderm tabakası gelişir. Mezodermin gelişmesiyle, artık hipoblasta → endoderm, epiblasta → ektoderm adları verilir. Endoderm, ektoderm ve mezoderm’den oluşan üç tabakalı embriyon diskine gastrola denir. Bu olaya da gastrolasyon denir. Gastrulasyon esnasında oluşan diğer iki çok önemli yapı, primitif çizgi ve notokord oluşmasıdır. 3. haftanın başında 15-16. günlerde embriyonun kaudal tarafında ve diskin darsal yüzünde bir grup epiblast hücresi çoğalıp toplanır ve diskin ortasında kalın ve şişkin çizgimsi bir yapı oluşturur. Buna primitif çizgi adı verilir. Kısa süre sonra primitif çizginin ortası boyunca uzanan bir oluk ya da yarık oluşur, buna da primitif oluk adı verilir. Primitif çizginin kronial ucunda hafif bir kabarıntı dikkati çeker, buna primitif düğüm adını veriyoruz. Bu düğümün ortasında da, primitif oluğun hafif çökmesiyle oluşan primitif çukur bulunur. Primitif çizgi, epiblast hücrelerinin çoğalıp o yörede toplanmalarından, primitif oluk ise çoğalan epiblast hücrelerinin, o bölgede şekil değiştirip içeriye doğru çöküp göç etmelerinden oluşur. Bu çökme olayına invaginasyon adı verilir. Gelişmenin 14-15. günlerinde, primitif çukur ya da oluktan geçen bir enine kesitte, primitif çizgiden bölen alan epiblast hücreleri hipoblast hücreleri ile yer değiştirir ve intraembriyonik (kalıcı) endodermi oluştururlar. 16. günde ise, yine şişe biçimli epiblast hücreleri bu kez epiblast ve kalıcı endoderm tabakaları arasına göç ederek embriyonik mezodermi (intraembriyonik mezoderm) oluştururlar. Primitif çizgiden bölen alan embriyonik mezoderm tabakasındaki hücrelere mezenşim hücreleri adı da verilir. Mezenşim hücreleri yayılma, çoğalma ve birçok farklı hücre tiplerine farklaşabilme yeteneğine sahiptirler (kemik, kıkırdak, kas ya da bağ dokusu hücresi gibi). Gevşek bir doku oluşturarak embriyoya destek sağlarlar. Notokordun oluşması 16. günde, primitif çizginin kronial ucunda bulunan primitif çukurdan invagine olan bir grup epiblast hücresi, diskin sefalik yani baş bölgesine doğru göç ederek, primitif çukurdan prokordal plağa kadar ulaşan ve notokard uzantısı adı verilen bir uzantı yaparlar. Notokord uzantısı ile birlikte, primitif çukurda bu uzantı içinde ileriye doğru uzayarak, bir lümen oluştururlar, böylece notokord kanalı oluşur. Sonuçta, notokord uzantısı, primitif çizgiden prokordal plağa kadar uzanan top benzeri bir kolon biçimindedir. Bu uzantı,sefalik uçta prokordal plaktan daha ileriye gidemez, çünkü bu bölgede, endoderm ve ektoderm birbirine sıkıca yapışmış ve orofaringial membranı oluşturmuştur. Aynı şekilde, primitif çizginin kaudal ucunda da, yine endoderm ve ektoderm tabakası sıkıca kenetlenerek, kloaka membranını oluştururlar. Orofaringeal membran, gelecekte oluşacak olan ağız bölgesini, kloaka membranı ise anüs bölgesini belirleyecektir. Notokordun Görevleri 1. Embriyonun ilkel eksenini oluşturur ve ona diklik sağlar. 2. Çevresinde ileride kolumna vertebralis gelişir ve notokord dejenere olarak intervertebral disklerin nükleus pulposus denilen kısımlarını oluşturur. 3. Üstündeki ektodermi indükleyerek, MSS başlangıcını oluşturan nöral plak adlı yapının gelişmesinde rol oynar. Allontois Kesesi Gelişmenin 16. gününde, kloaka zarının gelişmesiyle eş zamanlı olarak vitellüs kesesinin kaudal duvarının,bağlantı sapı içine doğru uzanan bir divertikülü olarak dikkati çeker. Bu kese sürüngenler ve kuşlarda idrar depo yeri olarak görev yapar. İnsanda küçüktür ve erken dönemde kan yapımına, geç dönemde de mesanenin gelişimine katılır. Embriyo kuyruk yönünde kıvrılırken allantois kesesinin bir kısmı embriyon içinde, bir kısmı da bağlantı sapı içinde kalır. Bağlantı sapı içindeki göbek bağı tam oluşunca silinir. Vücut içinde kalan kısmı ise, erginde idrar kesesi ile göbek arasında önce urakus denilen yapıyı sonrada median umblikal ligamenti yapar. Nörülasyon (Ektodermin İleri Farklanması) Nöral plak, nöral katlantı ve nöral kanalın gelişmesi olayına nörülasyon denir. Ektoderm germ yaprağı başlangıçta, sefalik bölgede geniş, kaudalde daha dar terlik biçiminde yassı bir disktir. Notokord gelişirken üzerindeki ektodermi indükler. Ektoderm kalınlaşır ve nöral plak oluşur. Böylece nörülasyon olayı başlamış olur. Nöral plağın oluştuğu bölgedeki ektoderme, nöroektoderm adı verilir. Terlik biçimindeki nöral plak zamanla genişler ve pirimitif çizgiye doğru uzanır. 3. haftanın sonralarına doğru, nöral plağın lateral kenarları daha fazla büyüyüp yükselerek nöral katlantıları oluştururlar. Nöral katlantıların oluşmasıyla, plağın orta yöresinde nöral yarık gözlenir. Nöral katlantılar, embriyonun gelecekteki boyun bölgesinden başlayıp, sefalo-kaudal yönde ve orta çizgide birbirlerine yaklaşarak birleşirler. Birleşme sonunda nöral tüp (23. gün) meydana gelir. Anteriör nöroporus (25. günde) Nöral tüp (23. gün) Posteriör nöroporus (27. günde) Nöral tüpten ileride SS gelişecektir. Nöral tüpün daha geniş olan sefalik bölgesinde beyin kesecikleri, daha dar olan kaudal bölgesinde ise medulla spinalis gelişecek. Ektoderm Ger in Tabakasının İleri Farklanması Ektodermin ileri farklanması ile şu organ ve yapılar gelişir. 1. Santral ve periferik sinir sistemi. 2. Göz, kulak ve burun duyu epiteli. 3. Epidermis ve ondan türeyen saç, tırnak gibi ekleri. 4. Meme bezi, adenohipofiz. 5. Dişin mine tabakası. Nöral Krista hüclerinden: 1. Spinal, kranial ve otonomik (sempatik – parasempatik) gangliyonlar. 2. Periferik sinir sistemindeki Schwan hücreleri. 3. derideki pigment hücreleri olan melanositler. 4. Böbreküstü bezi medulası. 5. belin ve omuriliği saran zarlar (Meningsler) 6. Brankial arkuslardan gelişen kas dokusu, bağ dokusu ve kemik dokusu (yüzün kas, kemik ve bağ dokuları). 7. Odon tablastlar (dişin mine tabakasını sentezleyen hücrelerdir). 8. Praganglionlar gelişir (Sinir sisteminin kavşak noktaları). 3. Haftanın Başında Anjiogenesis (kan damarlarının gelişme süreci) 1. Vitellus kesesi 2. Bağlantı sapı 3. Karyonun ekstra embriyonik mezodermi. Kan damarlarının gelişebileceği bu yerde: Mezenşim hücreleri → anjioblast → ilkel endotel hücre. Vitellus ve allontois kesesi damarlarının endotel hücrelerinden → ilkel kan plazması ve ilkel kan hücreleri. İlkel Kalp Gelişimi Kardiyojenik yöredeki mezenşim hücrelerinden → endokardiyal kalp tüpleri → ilkel kalp tüpü. 3.haftanın sonunda, kalp atar ve kan dolaşımı olur. İlk işlev gören organ sistemi kardiovasküler sistemdir. Mezoderm - Kıkırdak, kemik ve bağ dokusu. - Düz ve çizgili kaslar. - Kan ve lenf hücreleri. - Kan ve lenf damarları, kalp. - Böbrekler,ovaryum ve testisler ve genital boşaltım yolları. - Perikard, plevra, periton, seröz zarlar. - Dalak. Endoderm - Mide – bağırsak ve solunum yolları epiteli. - Tonsilla, tiroid, paratiroid, timus, karaciğer ve pankreas parankinaları. - İdrar kesesi ve üretranın çoğunluğunun epiteli. - Timponik boşluk ve östeki borusunun epiteli. 4. Haftada Bu haftanın özelliği embriyonun ölçülerinde hızlı bir büyüme gözlenmesidir. 4. haftanın sonunda 28 somitlik embriyonun genel görünümü. Somitler – yutak yayları (faringeal arkus). Embriyonun yaşı → somit sayısıyla ifade edilir. 5. Haftada Baş gelişimi diğer bölgelerden daha hızlıdır. Beynin hızlı gelişimine bağlıdır. Üst ekstremite tomurcuklarında el plaklarının oluşumu görülmeye başlar. Bacak tomurcuklarının belirmesi kollardan daha geç olur. 6. Haftada Kol tomurcukları ilk kez perikardiyal şişkinliğin dorsalinda 4. servikal ile 1. torasik somitler hizasında yer almıştır. Bacak tomurcukları kollardan daha sonra lumbar ve üst sakral somitler hizasında, göbek bağının birleşim yerinin kaudalinde belirir. 7. Haftada El plaklarındaki parmak uzantıları arasında çentikler belirir. 3-7 hafta araları 1. kaynaktan alınmıştır. İkinci Ay Bu ayda beyin gelişir. Baş vücuda göre daha büyük bir görünüm kazanır. Dana önce diğer memelilerin embriyolarından farkı olmayan embriyonun, ikinci ayın sonunda insan embriyosu olduğu ayırt edilir. İç ve dış yapıların hızla geliştiği bu dönem, yapısal anormalliklerin ortaya çıktığı bir dönemdir. Omfolosel (abdominal duvarda defekt), gastrosis (umblikal kord tabanında defekt), yarık damak ve yarık dudakta bu haftalarda ortaya çıkar. Kalp kapak ve septalarının geliştiği bu ayda kalp defektleri de gelişebilir. 5. ci haftada böbrekler şekillenmeye başlar. İmperfore anüs, ürorektel septumdaki bir anormallik ile ilişkili olan bu haftalarda ortaya çıkan bir diğer anormalliktir. Dış genitallerin, ilkel biçimde kol ve bacakların, göz, burun ve kulakların belirlenmeye başladığı bu ayın sonunda fetusun boyu 4 cm. kadardır. 2. aydan sonra cinsiyet farklılaşır. Üçüncü Ay (6-12 haftalık) Bu ayda embriyonel devre biter, Fetal devre başlar. Fetus artık bir insan şeklini almıştır. Embriyonel hayatta oluşan vücut yapıları, fetal hayatta büyümeye ve olgunlaşmaya başlar. Bundan dolayı fetus birçok teratojene karşı embriyodan daha az risk altındadır. Dış genitaller erkek ve dişiliğe farklanmıştır. Fetal hareketler başlar, kemikleşme görülür. 12 haftalık fetusun boyu 9 cm.dir. baş vücudun 1/3’ini yapar. Dördüncü Ay (13-16 haftalık) Fetal hareketler anne tarafından hissedilir. Bu periodda beyinde çok sayıda sinir hücresi hızla artar. Bu nedenle bu period önemlidir. Bir teratojen, (Örneğin rubella) bu periodda sinir hücrelerindeki gelişmeyi durdurarak zihinsel kapasiteye zarar verebilir. Kemikleşme yaygınlaşır, bağırsaklarda mekonyum, vücutta lanuğa, başta saç görülür. Fetus dördüncü ayın sonunda 16 cm. uzunluğundadır. Beşinci Ay (17-20 haftalık) Fetal hareketler kuvvetlenmiştir. Kemik iliği artar. Fetusun karaciğeri Fe depolamaya başlar. Bebek doğduktansonra ilk yılında bu Fe deposunu kullanır. Bu nedenle anneye gebeliğin ikinci yarısında Fe preperatları verilmektedir. Tüm vücutta verniks kazeoza şekillenir. Bu madde beyaz, yağlı, peynirimsi görünümündedir. Fetal sutaköz glandların yağ sekresyonundan ve epidermal hücrelerin salgılarından şekillenir. Fetusun derisini (emniyotik mayi’nin) etkisinden korur. Doğduktan sonra da vücut ısısını korur. Bu ayda Fetus ortalama 25 cm. boyunda, 500 gr. ağırlığındadır. Altıncı Ay (21-24 haftalık) Akciğerdeki alveolar hücreler surfaktan maddesini yapmaya başlarlar. Fetus bu ayda doğarsa nefes alır, ancak uzun süre yaşayamaz. Anneden geçen imminoglobilin düzeyi yükselir, böylece fetus ve yenidoğan hastalıklardan korunmuş olur. Kapiller sistem geliştiği için deri pembedir. Deri altı yağ dokusu gelişmeye başlar ve cilt kırışıktır. Fetus 6. ayda ortalama 30 cm. uzunluğunda, 700 gr. ağırlığındadır. Yedinci Ay (25-28 haftalık) Bu ayda akciğerlerde O2 ve CO2 değişimi mümkündür. Çünkü alveoller etrafındaki kopiller gelişmiştir. Surfaktan yapımı artmıştır. Bu ayda doğan fetuslar, özel ortamda yaşayabilir. Ancak yaşama şansı 1/10’dur. Beyin gelişiminin ikinci evresi 28. haftada başlar ve doğumu izleyen yıllarda devam eder. Hem destek hücreleri şekillenir hem de myelinizasyon devam eder. En erken gelişmeye başlayan ve gelişmesini en son tamamlayan organ beyindir. Bu nedenle hem prenetal hem de postnatal dönemlerde yetersiz beslenme sonucu öğrenme güçlükleri ve zayıf motor gelişme gibi sorunlar ortaya çıkabilir. 28 haftalık fetus 35 cm. ve 1000 gr. dır. Sekizinci Ay (29-32 haftalık) Deri kırmızı ve kırışıktır. 40 cm. uzunluğunda, 1700 gr. ağırlığındadır. Doğarsa yaşama şansı 1/3’tür. Dokuzuncu Ay (33-36 haftalık) Doğarsa yaşar. 45 cm. uzunluğunda, 2500 gr. ağırlığındadır. Derialtı yağ dokusu artmıştır. Yüzde kırışıklık ve vücutta languga azalmıştır. Testisler iner. Kas tonusu gelişmiştir. Onuncu Ay (37-40 haftalık) Fetus tam olarak gelişmiştir. Bu ayda doğan bebekler yeni doğan adını alırlar. Yenidoğan Bebek : olgun bir yenidoğan ortalama 50 cm. boyunda, 3200 gr. ağırlığındadır. Deri düzgün ve parlaktır. Lanuga, omuzlar hariç görülmez. Verniks kazeoza tüm vücudu kaplamıştır. Burun ve kulak kıkırdakları ve tırnakları gelişmiştir. Erkek bebeklerde testisler skrotum içine inmiştir. Oksiputo-frontal kutrun çevresi 34,5 cm, suboksipito bregmatik kutrun çevresi 32 cm’dir. Bu ölçüler doğumdan hemen sonra kaydedilen ölçülerdir. Kişisel ufak farklılıklar gözlenebilir. Erkek be eklerin baş çevrelerinin kız bebeklerinden biraz daha büyük olduğu görülmüştür. Doğum kanalının baskısı nedeni ile kafa kemikleri birbirin üzerine geleceğinden veya hematom nedeni ile Fetus başının ölçüleri değişebilir. Fetus başının diğer kutur ve çaplarından Doğum mekanizması konusunda bahsedilmişti.

http://www.biyologlar.com/zigotun-yariklanmasi

İndüklenmiş pluripotent kök hücreler

İndüklenmiş pluripotent kök hücreler

İnsan iPSC'lerinin hücre akıbetini kontrol etmek için kullanılan geniş bir hücre kültürü ortamı koleksiyonu, takviyeleri, biyoaktif küçük moleküller ve büyüme faktörleri sunuyoruz. Aşağıdaki tablo, insan iPSC'lerini farklı hücre soylarına ayırmak için kullanılan en yaygın şekilde kullanılan protokolleri, ortamları ve karakterizasyon antikorlarını vurgulamaktadır.

http://www.biyologlar.com/pluripotent-ozellik-nedir

BİTKİLERDE PALİNOLOJİK VE EMBRİYOLOJİK KARAKTERLER

A- Palinolojik Karakterleri: a) Polen Morfolojisi ve Taksonomi: Polen morfolojisi üzerinde ilk çalışmaları Lindloy (1830) tarafından yapılmıştır. 1935’te Wodehouse “Pollen Grains-Polen Taneleri” adlı eseriyle bu konudaki ilk önemli eseri ortaya koydu. 1950’de ise İsveç’li ünlü palinolog Erdtman “Pollen Morphology and Plant Taxonomy-Polen Morfolojisi ve Bitki Taksonomisi”adlı Angiospermlerle ilgili büyük eserini yayınladı. Tüm Angiosperm familyalarına ait polenleri içine alan bu esirin yayınlanmasından sonra polen morfolojisi ve çeper yapısı üzerindeki araştırmalar gün geçtikçe artan bir hızla çoğaldı. 1956’da Erdman’ın laboratuvarında 20.000 türe ait polen preparatı vardı. Polen tanelerinin taksonomik değeri olan başlıca özellikleri şunlardır: 1. Polenler üzerinde bulunan olukların sayısı ve durumu, 2. Açıklıkların (apertür) sayısı ve durumu, 3. Ekzin zar (dış zar) üzerindeki süslerin biçimi. Polenler, ayrıca genel yapı ve büyüklükleri bakımından da değişiklik gösterir. Fakat bunların taksonomik değeri azdır. Spermatophyta’da çokdeğişik polen tiplerine raslanır. Örneğin, Monokolpat tip: Bu tip polenler üzerinde bir yüzünde bir tek oluk bulunur. Bu polenler Gymnospermae, Monocotyledoneae ve bazı Dicotyledoneae türlerinde görülür. Trikolpat tip: Bu tip polenler boyuna uzanan 3 oluk taşır. Bunlar Dikotiledonların tipik polenleridir. Öteki tiplerin bunlardan türevlendiği kabul edilmektedir. Dikotiledonlarda ayrıca “Akolpat-oluksuz” ve “Pankolapat-çok oluklu” tiplere de rastlanır. Triporat, Poliporat polenler ise por (delik) sayısı üç ve çok sayıda olmalarına göre isimler alırlar. Ekzin zar üzerindeki süslere özellikle böcek ve kuşlarla tozlaşan bitkilerde rastlanır. Rüzgarla tozlaşan bitki polenleri ise düzdür. Polen türleri bazı bitkilerde dikenli (Asteraeceae türleri) ve uzun çıkıntılıdır (Trapa natans). Polen morfolojisi, tür, genus ve daha yukarı sistematik kategorilerde hem taksonomik, hem de filogenetik değer taşır. Çoğu kez bir taksona ait polen tipi sabit olup değişmez. Böyle taksona “Stenopalinoz takson” denir. Stonopolinoz familyalar öteki özellikleriyle de oldukça değişiktir. Bu familyaların başında Aselepiadaecae, Brassicaceae, Laminaceae ve Ponceae gelir. Polen tipi değişken olan taksona ise “Euripalinoz takson”denir. Euripolinoz familyaların sayısı oldukça çoktur. Bunlardan Verbenaceae familyası öteki karakterleriyle Laminaceae familyasına çok yakındır. Polen morfolojisi, özelikle Saxifragaceae familyası için çok önemlidir. Bu familyada birçok genus ve türün ayırımında polen tanelerinin özellikleri kullanılır. Familyalar gibi genuslar da stenopalinoz ve euripalinoz olabilir. Biribirine çok yakın olan Salix ve Populus genusları polen yapıları bakımından biribirinden oldukça farklıdır. Salix’te polenler uzunca olup trikolpat (3 oluklu) iken Populus’ta yuvarlak ve akolpat (oluksuz) tır. Polen taneleri Acanthaceae familyası genuslarının sınıflandırmasında büyük ölçüde kullanılır. Asteraceae familyasının alt gruplara ayrılmasında da çok işe yarar. Bu familyanın rüzgarla tozlaşan üyelerinde polenler düz, böceklerle tozlaşan üyelerinde ise dikenlidir. Yine Caryophylaceae familyasının polenleri tür ayrımında yaygın olarak kulalnılır. b) Polen Tanelerinin İnce Yapısı : Son yıllarda özellikle faz-kontras ve ultra-viyole mikroskop tekniklerinin gelişmesiyle polenlerin ince yapısı üzerindeki araştırmalarda da yoğunlaşmıştır. Elektronmikroskobunun bulunmasıyla bu çalışmalar daha da hızlanmıştır. Bu sayede polenlerin çeperi (sporoderm) ve çeperin tabakaları ayrıntılı biçimde araştırılmıştır. Ayrıca polenlerin dış yüzü de inceleme olanağı bulmuştur. Polenlerin dış yüzey yapısının hem sistematik hem de filogenetik önemi büyüktür. Özellikle kozalak taşıyan Gimnosperm üyelerinin sistematiğinde bunun değeri çok büyüktür. Polenlerin bu özeliklerine göre van Campo (1959) koniferleri (kozalaklı bitkiler) özel olarak sınıflandırmıştır. Polen araştırmalarında “ekteksin” ve “endeksin” zarların (eksin tabakasının dış ve iç zarları) ayrı ayrı değerleri vardır. Çünkü her iki zarın ince yapıları birbirinden farklıdır. Örneğin, Apiaceae familyası üyelerin polenlerindeki porlar (apertür) ekteksin zarında değişken olduğu halde endeksin zarında sabittir. Polenlerin ince yapısı gerek taksonomide, gerekse filogenide oldukça önem taşımasına rağmen teknikler yeterince gelişemediğinden bu konuda henüz gereği kadar aydınlatıcı çalışmalar yapılmış değildir. Polen nukleuslarının sayısı da sistematikte önem taşır. Monokotidonların polen nukleusları her zaman 2 olduğu halde Dikotiledonlarda gruplara göre 2 yada 3’dür : Dialypetalae (serbest petalliler) ve Apetalae’de (patalsizler) 2. Sympetalae’de (bileşik petalliler) ise 3. Üç nukleuslu grubun daha gelişmiş olduğu kabul edilmektedir. Son yıllarda polenler, üzerindeki porların sayısı, durumu ve diğer özelliklerine göre birçok tiplere ayrılmıştır. N= Sayı, P= Pozisyon (durum) ve C= Karakteri göstermek üzere kısaca “NPC Sistemi” olarak adlandırılan bu sınıflanmaya göre polenler 7N, 7P ve 7C sınıfına ayrılır. Her üç sınıf birbiriyle çarpılırsa toplam 343 değişik tip meydana gelir. Bunların her biri için değişik terimler kullanılır. Bu yüzden oldukça karışık bir sınıflama ortaya çıkar. Polen morfolojisi özellikle genusları sınıflandırmada kullanılır. Buna en iyi örnek Polygonaceae familyasından Polygonum genusudur. Uzun yıllar yalnızca bu genus altında toplanan birçok tür, son yıllarda polen morfolojileri ve kromozom sayılarına göre 7 genusa ayrılmıştır: Polygonum, Koenigia, Porsicaria, Pleuropteropyrum, Bistorta, Tiniaria ve Fagopyrum. Primulaceae familyası sistematiğinde ve tek yıllık Ranunculus türlerinin tayininde de polen morfolojisi önemli rol oynar. Polen araştırmaları filogeninin aydınlanmasına önemli ölçüde katkıda bulunmuştur. Özellikle Dikotillerle Monokotiller arasına kesin sınır kaymanın olanaksızlığı bu araştırmalarla ortaya çıkmıştır. Örneğin, bu güne kadar Monokotillerin en ilkel ordosu olarak kabul edilen ve sınıflandırmanın başına konan Helobiae ordosu, bu araştırmalarla Dikotillerin en ilkel ordosu olan Ranales’e aktarılmıştır. B – Embriyolojik Karakterler : Embriyolojik karakteler de taksonomide son yıllarda kullanılmaya başlamıştır. Taksomik değeri olan embriyolojik karakterler 3 dölde bulunur : a- Diploit döl b- Haploit döl c- Yeni sporofit döl (embriyo ve endorpermi içerir). Bu her üç dölde pek çok özellikler taksonomik değer taşır. Taksonomik değeri olan embriyolojik karakterlerin başında tohum taslağı tipleri gelir. Bunlar başlıca 3’e ayrılır: 1 – Anatrop, 2 – Ortotrop, 3 – Hemitrop tohum taslağı Bunların her üçünden de kampilotrop ve amfitrop alt tipleri oluşur. Bunlardan en ilkeli 2 integümentli anatrop tiptir. Öteki tiplerin bundan türevlendiği sanılmaktadır. Bununla beraber, bazı yönleriyle ortotrop tipin daha ilkel olduğu kabul edilmektedir. Paleobotanik araştırmalar da bunu doğrulamaktadır. Bir tohum taslağı dıştan içe doğru integümentler, embriyo kesesi, nesellus, endosperm ve embriyodan oluşur. Entegümentler tohum kabuğunu (testa) oluşturur. Endosperm ise gene bir besi doku olup çimlenmenin erken devresinde fideyi besler. Bazı bitkilerde bulunmaz, o zaman fide kotiledonlar (çimyaprak) tarafından beslenir. Tohum taslağının taksonomide kullanılan karakterleri şunlardır : a) İntegüment sayısı, b) Nusellusun hacmi ve devamlı kalıp kalmadığı, c) Embriyo kesesi tipi, d) Endospermin bulunup bulunmadığı, e) Embriyo özellikleri Bunlardan özellikle embriyo kesesi tipleri Asteraceae familyası sistematiğinde kullanılır. Poaceae familyası sistematiğinde ise embriyo ve endosperm durumu geniş ölçüde işe yarar. Çeşitli embriyolojik karakterlerin taksonomide kullanıldığı öbür familyalardan bazıları şunlardır: Onagraceae, Caryophyllaceae, Chenopodiaceae, Solanaceae, Piperaceae, ..vb.

http://www.biyologlar.com/bitkilerde-palinolojik-ve-embriyolojik-karakterler

Genetik Kopyalama - GENETIC CLONNIG

Döllenmemiş yumurta hücre çekirdeğinin (n) somatik dokudaki hücre çekirdeği (2n) ile yer değiştirilmesi Genetik Klonlama veya Kopyalama olarak bilinmektedir. Son yıllarda genetik kopyalama ile ilgili bilim dünyasında farklı görüşler ortaya atılmıştır. Klonlamanın faydası ve zararı ile ilgili yapılan açıklamalar gündemi uzun süre işgal etmiştir. Bu makalede genetik klonlama ile yapılan çalışmaların ve elde edilen sonuçların aktarılmasına çalışılmıştır. Anahtar kelimeler: Genetik Klonlama, DNA, Embryo, Çekirdek ABSTRACT: The exchange of unfertilised egg cell nuclues (n) with somatic cell nucleus (2n) is known as genetic cloning or copying. In recent years, there are snay different opinions in scince world. The explanations that is about benefits harms of genetic clonning are spoken for along time. In this review, it has been tried to express the results of the works that was mode with genetical copy. Key words: Genetic clonning, DNA, Embryo, Nucleus 1. GİRİŞ Genetik kopyalama; Bir memeli hayvan yumurtasından, vücut hücresinin çekirdeğinin yeniden programlanabileceği ve onu bütün bir birey oluşturabilme potansiyeline sahip kılabileceği' gerçeğine dayanan bir süreç olduğu belirtilmektedir. Yani 'Klonlama (kopyalama), tek bir hücre çekirdeğindeki genetik malzemeden, birbirinin özdeşi çok hücreli canlıların üretilmesidir. (www.medical-ethics.net/Files/Klon.htm) Bilim adamları ilk kez bir erkeğin spermleri ile döllenmeyen "Kaguya' ismi verilen iki dişi farenin kromozomlarını birleştirerek memeli bir hayvanın doğduğunu açıkladı.( www.genbilim.com/kaguya.htm) Şubat 1997 de ilk kez Dolly (koyun meme hücresinden alınan DNA ile elde edilen genetik kopyalama) hakkında yayın yapıldığında önemli bilimsel başarı ortaya konulmuştur. Bu uygulama genetik mühendisliğinde farklı gelişmelere neden olmuştur. Bütün bu olaylar, çekirdekte bulunan DNA molekülünün çalışmasıyla ilgilidir. Genetik kopyalama çalışmaları ile tarım , hayvancılık ve hastalıkların tedavisinde çığır açabilecek sonuçlar verebilir. Ayrıca tıpta hastalıkları gidermek amacıyla kök hücre üretimi çalışmaları yapılmaktadır. 2.MATERYAL VE METOT Genetik Materyal (DNA) Her canlının kendine özgü özellikleri vardır ve bunlardan birisi canlının cüssesidir. Yaklaşık olarak canlı büyüklüğü milimetrenin 1/100.000 kadar küçük boyutundan 6-7 metre boyunda olan zebralara kadar geniş bir farklılık göstermektedir. 0.1 mm’den sonra gözümüzle göremediğimiz cisimleri ışık mikroskopu gibi yardımcı araçlarla görebiliriz. Bunlar, maya hücreleri, kömür tozu, kırmızı kan hücreleri , ciğerde rahatsızlık oluşturan toz, boya pigmenti, bazı bakteriler dir. 0.1 mikrondan daha küçük parçaları da elektron mikroskobundan görebiliriz. Bunlar ise tütün dumanı, virüsler, albumin proteini şeklinde sıralanabilir. DNA’nın çapı yaklaşık 0.00001mm=10000 mikron 1-10nm’dir. Bunlardan daha küçük birimler bazı tuzlar, şeker molekülleri ve atomları oluşturmaktadır. Hücre büyüklüğü ise yaklaşık 10-100 mikron=0.1-0.01 mm arasındadır. Klonlama Teknolojisinin Gelişimi Bu teknolojinin gelişim aşamalarını şöyle özetleyebiliriz; 1.Transgenik teknoloji : Gen veya gen parçalarının bir fertten alınıp bir başka ferdin DNA’sına tranferi şeklinde düşünülebilir. Bu teknolojide gen veya genler döllenmiş yumurtaya aktarılır. Mesela kanser oluşturan insan genleri fare embriyolarına aktarılarak drog sanayiinde tedavilerin testinde kullanılabilmektedir. Bu teknoloji ile insan’dan koyun’a, domuz’a, sığır’a ve keçi’ye gen aktarımı yapılmakta, sütlerinde insan proteini üretilmesi yanısıra organ, doku ve kan üretme imkanı da bulunmaktadır. Bu protein ile emphysema ve cystic fibrosis gibi hastalıklar tedavi edilebilmektedir. 2.Çekirdek transfer teknolojisi : Bu teknoloji bir hücredeki bütün genomu yani somatik kromozomların bir hücreden diğerine naklini ifade eder. Çekirdek, döllenmiş yumurta hücresinden alınmakta ve çekirdeği alınmış fakat döllenmemiş yumurta hücresine yerleştirilmektedir. Bu sistemle uygulanan böyle bir teknik klonlama olarak değerlendirilmemektedir. Zira bir duplikasyon işlemi bulunmamaktadır. Ancak burada sitoplazmada bulunan mitokondri DNA’ları farklıdır. Çekirdek teknolojisini kullanarak yapılan klonlama : İki şekilde yapılmaktadır; a) Embriyo klonlama :Alınan örnek, döllenmiş bir embriyodan alınıp yine aynı annenin yumurtasında çekirdek transferi yapılırsa bu durumda mitokondri DNA’ları aynı olacaktır. Bu teknoloji benzer ikizlerin oluşturulmasında kullanılmakta ve embriyo klonlama olarak bilinmektedir. Sığır, kurbağa ve farede de başarılı şekilde denenmiştir. İnsanlarda da bu tip klonlama yapılmış ancak bu ikizler yaşatılamamıştır. Bununla beraber basında klonlama olarak isimlendirilmesine rağmen bu uygulamada farklı çekirdekler kullanıldığı için bunlar gerçek klonlar değillerdir. b) Normal canlı klonlama : Dolly doğuncaya kadar, normal bir canlıyı klonlamak mümkün değildi. Organizma döllenmiş bir yumurtadan meydana gelmekte ve her bir hücre döllenme sonucunda oluşan tüm bir genomu içermektedir. Her bir hücre birbirinin tamamen aynısıdır. Ancak, büyüme ve gelişme olayları hücrelerde farklılaşma meydana getirmekte ve beyin dokusu, kalp dokusu, deri, kemik vs oluşmaktadır. Bazı genler somatik hücrelerde bu şekilde özel görevlere ayrıldığı zaman çalışmasını durdurmakta ve sadece ilgili deri, kemik gibi genleri çalışmaktadır. Embriyonik klonlamada farklılaşmaya başlamamış döllenmiş yumurta hücresinin çekirdeği (genom) kullanılmaktadır. Dolly’nin oluşumunda böyle bir dokudan alınan hücreyle bu işlem başarılmıştır. Bu transfer sonunda, somatik dokudaki çalışmayan genler tekrar çalışmaya başlamış ve genlerin çalışması organların oluşmasıyla durmuştur. Genlerin gerektiği zamanda çalışması veya çalışmasını durdurması klonlamanın esasını oluşturmaktadır. Bu işlem 277 denemeden sadece birinde başarıya ulaşmıştır. Bu uygulamada döllenmemiş yumurtanın çekirdeği çıkarılarak, somatik hücre çekirdeği bu yumurtanın içine yerleştirilmiştir. Oluşan zigot, herhangi bir koyuna nakledilerek gelişmeye bırakılmıştır. Bu uygulamanın embriyonik klonlamadan farkı, mitokondriyal DNA’nın farklı olmasından kaynaklanmaktadır. Burada ilginç olan diğer nokta, Dolly bir babaya sahip değildir, fakat 4 anneye sahip olabilir. Mesela, annesi; Genomu kullanılan bir dişi olabilir ,Yumurta hücresini veren dişi olabilir ,Gameti taşıyan bir dişi olabilir ,Dişi, klonlanmış kuzuyu taşıyabilir. TARTIŞMA VE SONUÇ Roslin Enstitüsüne sorulan sorular 1998 yılları başında Roslin Enstitüsünün yapmış oldukları çalışmalar hakkında Independent gazetesinden Charles Arthur ve Jeremy Laurance tarafından hazırlanan Internet sayfasında aşağıdaki sorular gündeme alınmıştır. Niçin insanlar, insan klonlama fikri hakkında çok karşıt durumdalar? Bu insanlar, ne bilim adamlarının “Playing God” fikrini ne de zengin adamlarının kendi kopyalarını yapma fikrini seviyorlar. Bazı lunatik kişiler, Hitlerin DNA’sını bulmaya çalışıyorlar. Niçin klonlama isteniyor? Denenmesinde bazı faydalar olabilir. Araştırma, 14 günlük insan embriyosuna kadar fertilite ile ilgili problemleri anlamak amacıyla izinlidir. Çok kısa zaman olan bu sürede, ilerideki çalışmalarla klonlama yapmak mümkündür. Genelde DNA bozukluğu ve tamiri bu dönemlerde belli olmaktadır. Tek sebep bu mudur? Hayır. Roslindeki çalışmalarda Dolly’nin varlığı, insana yararları olan bir durumu izah etmektedir. Mesela, Polly, laboratuvarda embiryodan klonlanan bir diğer koyundur. İnsan sütünde bulunan Faktör IX proteini üretilmektedir. Bu protein hemofili B hastaları için gereklidir. İnsan hücrelerinin klonlamasıyla deri ve kan hücreleri üretilebilir. İnsan klonlaması hangi şartlarda kabul edilebilir? Ruth Deech tarafından önerilen uygulamalarda, mitokondriden oluşan kalıtsal hastalıklara maruz kalan hastaların tedavisinde kullanılabilir. Bu problem epilepsi veya körlüğe neden olabilir. Bunun için sağlam mitokondrili embriyolara çekirdek transferi yapılabilir. Niçin Mitokondri o kadar önemli? Bilim adamları bu organelin yaşlanmada bir rol oynadığını düşünmektedirler. Onun DNA’sı yeni bir mitokondri yapmak için gerekli bilgileri taşımaktadır. Şayet, mitokondri çalışmassa, teorik olarak hücreler ölmektedir. Mitokondriyel DNA daima yumurtada yenidir? O zaman üzülmeye gerek yok değil mi? Muhtemelen evet, Ancak, çekirdek içindeki DNA’da yaşlanmaktadır. Bir çok kez, hasar görüyor ve tekrar tamir ediliyor. DNA hasarı çoğunlukla kanser oluşturmaktadır. Dolly, şu ana kadar sağlıklı görülüyor. Bununla beraber, Dr Jeremy Grifo “Klonlamanın diğer tadavi işlemlerinden daha iyi bir yöntem olmadığını belirtmektedir.( Arthur, C. ve Laurance, J. 1998. Cloning. www.independent.co.uk) Çalışmalar, memeli canlılarda daha ileri teknikle ve yüksek verimle uygulanmaya başladığında önemli yararları da beraberinde getirebilecektir. Bu yöntem, transgenik manipulasyonlarla üretilebilen endüstriyel öneme sahip maddeler ve hormon, protein kökenli ilaçlar çeşitli memeli canlıların süt veya kanlarında daha düşük maliyetle yüksek miktarlarda üretilebilecektir. Organ nakillerinde insan organizmasının reddetmeyeceği hücre özelliklerine sahip organlar diğer memeli canlılarda geliştirilebilecektir. Aynı şekilde kanser, degeneratif hastalıklar, viral veya enflamasyon hastalıklarının tedavisinde kullanılabilecek terapötik hücre üretimi mümkün olabilecektir. Bu teknik gelişmesini tamamlayıp bütün memeli canlılarda uygulanabildiği taktirde insanın da eşçoğaltımı (klonlanması) olasılığı bütün dünyada yoğun şekilde tartışılmaktadır. Gelecekte teknik koşulların böyle bir işlemi gerçekleştirecek düzeye ulaşacakları varsayılsa dahi, insanın genetik kopyasının geliştirilmesinin yaratacağı felsefi, yasal ve ahlaki sorunlar belki de günümüze kadar tanık olunmamış boyutlara ulaşacaktır. 8. Kaynaklar Artur, c. ve Laurance, J. 1998. Clonning (http.www.independent.co.ok ) www.genetikbilimi.com.tr www.medical-ethics.net/Files/Klon.html Okumus, 1997. Genetik Kopyalama ve Uygulaması. Prognoz. Cilt1, sayı2, S81-82 www.tubitak.gov.tr   Ali Şahin  

http://www.biyologlar.com/genetik-kopyalama-genetic-clonnig

Kök Hücre ve Telomeraz

Aldıkları sinyale göre farklı hücre türlerine dönüşüyorlar. Bunu kontrol eden unsurlarsa genlerdir. Bir kök hücresinin hangi hücreye dönüşeceğini hücre çekirdeğindeki genler belirlemektedir. Diğer hücreler ölünce veya hasar görünce, kök hücreler hangi hücre türüne ihtiyaç varsa o hücreye dönüşüyorlar. Bu işlem sırasında bazı genler daha aktif hale gelirken, bazıları da baskılanmaktadır. Kendisini yenileme gücüne sahip olan kök hücreler, bir bakıma diğer hücre türleri için tükenmez bir kaynak görevi üstlenmektedirler. İlk olarak 1998 yılında insan embriyosundan kök hücre elde edilip kültürlerde çoğaltılmasından sonra kök hücre araştırmaları hız kazandı. Değişik hücre türlerine dönüşebilme potansiyeli olan kök hücreleri, kontrol edilebildikleri taktirde laboratuvar ortamında istenilen hücre türüne dönüştürülebiliyorlar. Böylece vücutta eskiyen, hastalanan veya ölen hücrelerin veya organların yerini doldurmak üzere laboratuvarda kök hücrelerinden yeni hücreler, hatta yeni bir organ elde edilebilir. Ancak bunu başarabilmek için hücrenin genetik şifresini ve kontrol mekanizmalarını çok iyi bilmek gerekiyor. Kök Hücre nedir? Erkeğin spermi ile kadının yumurtası birleştiğinde, yani döllenme sonrası oluşan hücre (zigot) tek başına tüm organizmayı meydana getirebilecek genetik bilgiye ve güce sahiptir. Vücuttaki tüm hücrelere dönüşebilecek potansiyele sahip olan bu ilk embriyonel hücreye "totipotent" herşeyi yapabilen anlamında hücre denilmektedir. Döllenmeyi izleyen ilk dört ile beş gün içerisinde tek hücreden meydana gelen tüm hücreler aynı güce sahiptir, yani döllenme sonrası ilk dört gün içerisinde oluşan hücreler rahim içerisine yerleştirildiğinde her biri tek başına bir organizma, yani insan oluşturabilecek güçtedirler. Anne karnında ilk dört gün içerisinde eğer herhangi bir nedenle bu hücreler birbirinden ayrılırsa, ayrılan her hücre kendi başına büyüyebilir ve ayrı bir insan meydana gelebilir. Genetik şifreleri aynı olan bu kişiler “tek yumurta ikiz” leridir. Beşinci günden, yani 2-3 hücre bölünmesinden sonra meydana gelen hücreler "blastosit" denilen küresel bir şekil alırlar. Bu kürenin içerisindeki hücreler vücuttaki tüm hücrelere dönüşebilecek potansiyele sahipler; ancak tek başlarına tüm organizmayı oluşturamamaktadırlar. Yani, döllenmeden 6-7 gün sonra meydana gelen hücrelerden herhangi biri alınıp rahime yerleştirilirse bu hücre artık bir insan oluşturamıyor. Beşinci günden sonra oluşan hücreler her hücre türüne dönüşebilecek güce sahipler. Gerekli ortam sağlandığında bu hücreler bilinen yaklaşık 200 hücre türüne dönüşebiliyorlar. Ancak bu hücreler artık tek başına tüm organizmayı oluşturamıyorlar. Bu nedenle bu hücrelere "pluripotent" hücre deniliyor. Hayvanlardan ilk olarak 1981 yılında elde edilen bu tür kök hücreler yaklaşık 15 yıl sonra insanlardan da elde edildi. Hücrelerin bölünme kapasitesini, yani bir bakıma ömrünü belirleyen faktörlerden biri, kromozomların ucunda bulunan ve "telomer" denilen DNA zincirleridir. Bu zincirlerin uzun kalmasını sağlayan ise telomeraz enzimidir. Bir hücrede telomeraz ne kadar aktifse telomer uzunluğu da o kadar korunabiliyor demektir. Telomerler ne kadar uzun olursa hücrelerin bölünme kapasitesi de o kadar fazla olur. Kök hücrelerde de çok aktif telomeraz faaliyeti ve buna bağlı uzun telomer zinciri vardır. Bu nedenle kök hücreler çok uzun sürelerle bölünerek kendilerini kopyalayabiliyorlar. Anne karnındaki organizmanın daha sonraki gelişim aşamalarında hücreler biraz daha özel görevlere sahip oluyor ve erişkin kök hücrelerine dönüşüyorlar. Bu erişkin kök hücreleri de belirli hücre türlerini meydana getiriyor. Örneğin kan kök hücresi kemik iliğinde bulunuyor ve gerektiğinde beyaz kan hücreleri, kırmızı kan hücreleri ve kanın pıhtılaşmasında görev alan trombositlere dönüşüyor. Aynı şekilde deri kök hücreleri de değişik deri hücrelerine dönüşebiliyorlar. Biraz daha özelleşmiş olan bu kök hücrelere "multipotent" (çok yetili) hücre deniliyor. Tüm organizmayı oluşturma gücüne sahip olan veya tüm hücre türlerine dönüşebilen kök hücreler, insan gelişiminin ilk aşamalarında, yani embriyo aşamasında bulunuyor. Ancak biraz daha özelleşmiş kök hücreleri çocuklarda ve hatta erişkinlerde bulunabiliyor. Buna en iyi örnek kemik iliğindeki kan kök hücreleri. Bu hücreler hem çocuk hem de erişkin kemik iliğinde bulunuyorlar. İnsan vücudunda ancak belirli birkaç hücre türüne dönüşebilen erişkin kök hücreleri, laboratuvar koşullarında gerekli ortam ve sinyaller sağlandığında çok daha fazla hücre türüne dönüşebilmektedirler. Örneğin, normal koşullarda sadece kan hücrelerine dönüşen kan kök hücreleri, istenildiğinde sinir hücresine dönüşebiliyorlar. Kök Hücrelerin Kaynağı: Kök hücreler üç kaynaktan elde ediliyor. Bunlardan ilki insan veya hayvan embriyosu. Yani daha anne karnında 5-6 hücre aşamasındaki organizmadan kök hücre elde edilebiliyor. Buna embriyonel kök hücre deniliyor. İnsan embriyonel kök hücresi ilk olarak 1994 yılında elde edildi, 1998 yılındaysa laboratuvarlarda üretilmeye başlandı. Anne karnında büyüyerek fetus haline gelen organizmanın ileride sperm veya yumurta olacak üreme hücreleri de kök hücre kaynağı olarak kullanılabiliyor. Kök hücrelerin diğer bir kaynağıysa erişkinlerde bulunan ve birkaç hücre türüne dönüşebilen "erişkin kök hücre" leridir. Hücrelerin duvarındaki belirli işaretleri tespit ederek, yani bir bakıma bar kodunu okuyarak hangi hücrenin kök hücre, hangisinin farklılaşmış hücre olduğunu anlamak mümkündür. Erişkin kök hücrelere en iyi örnek, her insanda kemik iliğinde bulunan kan kök hücreleridir. Deneysel çalışmalarda her iki kaynaktan elde edilen kök hücreler kullanılmaktadır. Hangi kaynaktan alınırsa alınsın elde edilen kök hücrelerin laboratuvarda çoğaltılmasıyla yeni kök hücre elde edilmesi veya farklı hücre elde edilmesi mümkündür,. ancak embriyodan elde edilen kök hücreler ahlaki açıdan oldukça tartışmalıdır. Bu hücreleri elde etmek için embriyonun hayatına son vermek gerekiyor ve bu da özellikle toplumun tutucu kesiminin tepkisine yol açmaktadır. Telomerler ve Telomeraz: Telomerler, ökaryotik kromozomların uçlarında yer alan ve çok sayıda "TTAGGG" dizi tekrarı içeren heterokromatik yapılar olup kromozom stabilitesinde, gen ekspresyonunda, kromozomal replikasyonda, tümör oluşumunda, yaşlanmada ve hücre bölünmesinde rol aldıkları bilinmektedir. Ökaryotik hücrelerdeki DNA replikasyonunda, kalıp DNA'nın 3' ucunun normal replikasyon mekanizmasıyla kopyalanamamasına "replikasyon sonu problemi" denmektedir ve bunu kompanse edecek moleküler mekanizmaların yokluğunda, her hücre bölünmesinde kromozomal DNA'nın 3' ucunda, yaklaşık 50-200 nükleotidlik kayıp olmakta ve sonuçta "hücresel yaşlanma" gelişmektedir. Telomeraz (telomer terminal transferaz), kromozomal uçlardaki "TTAGGG" tekrarlarının sentezinden sorumlu olan ribonükleoprotein yapıda özel bir DNA polimerazdır. Embriyonik hücreler ve erişkin kök hücrelerinde aktif olan bu enzim, normal somatik hücrelerde saptanmamakta, immortal kanser hücrelerinde ise yeniden aktive olmaktadır. İnsan telomeraz enziminin bilinen 3 komponenti mevcuttur: 1) İnsan telomerazı RNA komponenti (hTR) 2) İnsan telomerazı reverse transkriptazı (hTERT) 3) İnsan telomerazı protein komponenti (TP 1) "hTR"nin, telomer DNA'sına komplementer olan ve 5'-CCCUAAA-3' tekrarlarını içeren 8-30 bazlık bir bölümü sentezde kalıp olarak kullanılmaktadır. Telomerazın katalitik altbirimi olan "hTERT" ise bu diziye komplementer olan "GGTTAG" dizi tekrarlarını sentezlemekte ve "G"den zengin olan 3' ucuna eklemektedir. RNA kalıbının, yeni sentezlenen telomerik dizinin 3'ucuna doğru kaymasıyla, DNA polimeraz bu diziyi kalıp olarak kullanarak karşı komplementer zinciri tamamlar. Telomerazın RNA altbirimine bağlanan "TP1"in, enzimatik aktivitenin regülasyonunda rolü olabileceğini ileri sürmektedir. Kaynaklar Başaran, N. 1996, Tıbbi Genetik, 6.baskı, Bilim Teknik Yayınevi, İstanbul. Klug, W., Cummings M.R. 2002. Genetik Kavramlar, 6.baskı, Çeviri Ed. Öner, C., Palme Yayıncılık, Ankara. Temizkan, G. 1999, Genetik II.Moleküler Genetik, İ.Ü.Fen Fakültesi Basımevi, İstanbul, encarta.msn.com/text www.personal.psu.edu/users www.omu.edu.tr www.tubitak.gov.tr gslc.genetics.utah.edu/units/cloning/whatiscloning/      

http://www.biyologlar.com/kok-hucre-ve-telomeraz

Klonlama Teknolojisinin Gelisimi

Gen veya gen parçalarinin bir fertten alinip bir baska ferdin DNA’sina tranferi seklinde düsünülebilir. Bu teknolojide gen veya genler döllenmis yumurtaya aktarilir. Mesela kanser olusturan insan genleri fare embriyolarina aktarilarak ilaç sanayiinde tedavilerin testinde kullanilabilmektedir. Bu teknolojinin gelisim asamalarini söyle özetleyebiliriz; 1.Transgenik Teknolojisi Bu teknoloji ile insandan koyuna, domuza, sigira ve keçiye gen aktarimi yapilmakta, sütlerinde insan proteini üretilmesi yanisira organ, doku ve kan üretme imkani da bulunmaktadir. Bu protein ile emphysema ve cystic fibrosis gibi hastaliklar tedavi edilebilmektedir. 2.Çekirdek Transfer Teknolojisi Bu teknoloji bir hücredeki bütün genomu yani somatik kromozomlarin bir hücreden digerine naklini ifade eder. Çekirdek, döllenmis yumurta hücresinden alinmakta ve çekirdegi alinmis fakat döllenmemis yumurta hücresine yerlestirilmektedir. Bu sistemle uygulanan böyle bir teknik klonlama olarak degerlendirilmemektedir. Zira bir duplikasyon islemi bulunmamaktadir. Ancak burada sitoplazmada bulunan mitokondri DNA’lari farklidir. 3.Çekirdek Teknolojisini Kullanarak Yapilan Klonlama Iki sekilde yapilmaktadir; a)embriyo Klonlama: Alinan örnek, döllenmis bir embriyodan alinip yine ayni annenin yumurtasinda çekirdek transferi yapilirsa bu durumda mitokondri DNA’lari ayni olacaktir. Bu teknoloji benzer ikizlerin olusturulmasinda kullanilmakta ve embriyo klonlama olarak bilinmektedir. Sigir, kurbaga ve farede de basarili sekilde denenmistir. Insanlarda da bu tip klonlama yapilmis ancak bu ikizler yasatilamamistir. Bununla beraber basinda klonlama olarak isimlendirilmesine ragmen bu uygulamada farkli çekirdekler kullanildigi için bunlar gerçek klonlar degillerdir. b)Normal Canli Klonlama (Somatik Nüklear Transfer): Dolly doguncaya kadar, normal bir canliyi klonlamak mümkün degildi. Organizma döllenmis bir yumurtadan meydana gelmekte ve her bir hücre döllenme sonucunda olusan tüm bir genomu içermektedir. Her bir hücre birbirinin tamamen aynisidir. Ancak, büyüme ve gelisme olaylari hücrelerde farklilasma meydana getirmekte ve beyin dokusu, kalp dokusu, deri, kemik vs olusmaktadir. Bazi genler somatik hücrelerde bu sekilde özel görevlere ayrildigi zaman çalismasini durdurmakta ve sadece ilgili deri, kemik gibi genleri çalismaktadir. Embriyonik klonlamada farklilasmaya baslamamis döllenmis yumurta hücresinin çekirdegi (genom) kullanilmaktadir. Dolly’nin olusumunda ise somatik bir dokudan alinan hücreyle bu islem basarilmistir. Bu transfer sonunda, somatik dokudaki çalismayan genler tekrar çalismaya baslamis ve genlerin çalismasi organlarin olusmasiyla durmustur. Genlerin gerektigi zamanda çalismasi veya çalismasini durdurmasi klonlamanin esasini olusturmaktadir. Bu uygulamada döllenmemis yumurtanin çekirdegi çikarilarak, somatik hücre çekirdegi bu yumurtanin içine yerlestirilmistir. Olusan zigot, herhangi bir koyuna nakledilerek gelismeye birakilmistir. Bu uygulamanin embriyonik klonlamadan farki, mitokondriyal DNA’nin farkli olmasindan kaynaklanmaktadir. Burada ilginç olan diger nokta, Dolly bir babaya sahip degildir, fakat 3 anneye sahip olabilir. Mesela, annesi; -Genomu kullanilan bir disi olabilir -Yumurta hücresini veren disi olabilir -Gameti tasiyan bir disi olabilir 4.Genetik Ikizlik Ikizlik kavrami iki veya daha fazla benzer kardeslerin olusmasi anlamindadir. Ikizlik, seksüel bir üretim sonucudur. Hücredeki bütün DNA iki farkli ferdin DNA’larinin yarisini tasimaktadir. Döllenmis yumurta iki ya da daha fazla parçaya tekrar bölünecek ve ayni cinsiyette fertler meydana getirecektir. Bu olayin çekirdek transferi ile ilgisi yoktur. Klonlama ise aseksüel bir üretimle ilgilidir. Klonlamada mitokondri DNA’lari farkli olabilir ancak ikizlikte hepsi ayni olmak zorundadir. 5.Klonlamayla IVF (In Vitro Fertilizasyon) Arasindaki Farki IVF, yumurta hücresinin (sansi artirmak için birkaç tanesi) sperm tarafindan tüpte döllendirilmesi ve daha sonra rahime implante edilmesi olayidir. Klonlamada ise yumurta hücresinin çekirdegi tüpte çikariliyor ve klonlanacak canlinin çekirdegi bu hücreye veriliyor. Dolayisiyla, yumurta hücresi artik büyüyecegini saglayan çekirdege sahip oluyor. Bundan sonra bu yeni hücre rahime implante ediliyor ve normal embriyolar gibi büyümeye devam ediyor. klon embriyolar, normal ve IVF (in vitro fertilizasyon) embriyolari birbirlerine çok fazla benzemezler. Roslin Enstitüsü’ndeki arastirmacilar, klon embriyolarinin normal embriyolardan daha büyük oldugunu ve hamileliklerin basarisizliginin ve fetüs ölümüyle sonuçlanmasinin daha çok rastlandigini veya sezeryan ameliyatlara ihtiyaç duyuldugunu saptamislar. DoçDr.Eyyüp Rencüzogullari Kaynaklar Basaran, N. 1996, Tibbi Genetik, 6.baski, Bilim Teknik Yayinevi, Istanbul. Klug, W., Cummings M.R. 2002. Genetik Kavramlar, 6.baski, Çeviri Ed. Öner, C., Palme Yayincilik, Ankara. Temizkan, G. 1999, Genetik II.Moleküler Genetik, I.Ü.Fen Fakültesi Basimevi, Istanbul, encarta.msn.com/text www.personal.psu.edu/users www.omu.edu.tr www.turkiye.net gslc.genetics.utah.edu/units/cloning/whatiscloning/ www.tubitak.gov.tr

http://www.biyologlar.com/klonlama-teknolojisinin-gelisimi

KÖK HÜCRE ÇALIŞMALARI ve ETİK

Bilim çevrelerinde sonu gelmez tartışmalara yol açan kök hücre araştırmaları ile ilgili haberleri sıkça okumaktayız.(1) Halen ülkemizde yasal bir düzenleme olmaması, uluslararası arenadaki belirsizlik karşısında yadırganmamalıdır. Ancak son yıllarda hızla gelişen regenerasyon (ya da hayat bilimi) olarak adlandırılan bu alanın hukuksal altyapısının olmamasının, istenmeyen sonuçlara açık kapı bıraktığının bilincinde olmanın da vaktidir. James Thomson’un başında olduğu ekibin, 1998 yılında kök hücreleri ilk kez embriyodan ayrıştırıp, laboratuvar ortamında yaşattıklarını açıklayalı beri, bilimsel çevrelerde kök hücrenin yaratacağı mucizeden ve tıpta devrim sayılacak gelişmelere gebe olunduğundan bahsedilmektedir. Bunun anlamı insanda bulunan bütün hücrelere dönüşebilen kök hücre sayesinde, vücudumuzda artık işlev göremeyecek hale gelmiş ya da bir kaza sonucu eksilmiş bir organımızın yerine yenisini koyabileceğimizdir.(2) Kök hücrenin kalıcı sakatlıklar ve tedavisi imkânsız hastalıklarda vaat ettiği tedavi, bilim dünyasını heyecanlandırdığı gibi hastalarda ve hasta yakınlarında da büyük umutlar doğurmaktadır. Kök hücrenin omurilik yaralanmaları, Parkinson, Alzheimer gibi hem yakını hem de hasta için maddi ve manevi zorluklar taşıyan hastalık ve sakatlıklara çare olma iddiası(3), son hızla yayılmakta, ve araştırmaların bir an evvel insanlar üzerinde deneme safhasına geçilmesi istemini kuvvetlendirmektedir. Bu çalışmamın amacı, kök hücre araştırmalarından kaynaklanan tartışmaların konu başlıklarını verip ahlaki ve etik sorunları ortaya koyarak; gerek uluslararası alanda gerek ulusal mevzuatımızdaki yasal durumu incelemektir. Bunun için çalışmamın ilk kısmında konuyla ilgili tanımları vermek ve niye embriyonik kök hücre araştırmaları üzerinde durulduğunu açıklamak istiyorum. İkinci kısımda ahlaki ve etik tartışmalara göz gezdirdikten sonra, üçüncü kısımda uluslararası arenadaki kök hücre araştırmalarına dair hukuksal metinleri ve gelişmeleri irdeleyip, dördüncü kısımda Türkiye’deki mevcut düzenlemelere değinmek niyetindeyim. 1. TANIMLAR: Kök hücreler kendini yenileyebilen yahut özel olarak farklılaşmış bir veya birçok tipte hücreyi meydana çıkaracak hücreye dönüşebilecek hücrelerdir.(4)Bir diğer tanımda, benzer şekilde, “bölünerek kendini yenileyen ve kan, karaciğer, kas gibi özelleşmiş görevler üstlenen organları oluşturabilecek biçimde farklılaşabilen hücrelerdir” denmektedir (5). Kök hücre, elde edildikleri yerler temel alınarak erişkin kök hücresi ve embriyonik kök hücre olarak iki başlık altında toplanmaktadır. Erişkin kök hücre: Erişkin dokularda bulunabilen ve birçok hücreye dönüşebilen kök hücresidir.(6) Ayrıca erişkin bireylerden elde edilen, embriyonik kök hücreler gibi birçok hücre tipine dönüşebilen hücreler olduğu da söylenmektedir. (7)Erişkin kök hücresi kemik iliği, kas, sinir, karaciğer gibi dokularda bulunmaktadır . Embriyonik kök hücre: Embriyonik kök hücre blastosit denen erken dönemdeki embriyodan elde edilmektedir. Bu bağlamda embriyonun tanımını vermemiz gerekiyor. Kısaca embriyonun, üreme hücreleri olan yumurta ve spermin birleşmesi -döllenme- sonucu oluşan cenin gelişimin ilk aşamasındaki hücre grubu olduğu söylenmektedir.(8) Kök hücre araştırmaları için kullanılan embriyolar in vitro (tüpte döllenme) yöntemi kullanılarak laboratuvar ortamında ortaya çıkartılmış embriyolardan alınmaktadır. Bu embriyolar ise ya kısırlık tedavisi sonucu çocuk sahip olmak için tüpte döllenme yöntemi kullanılarak ortaya çıkartılmış embriyolardan çeşitli nedenlerle ana rahmine yerleştirilmemiş artık/fazlalık embriyolar ya da yalnızca araştırma /tedavi amaçlı ortaya çıkarılmış embriyolar olmaktadır.(9) Kök hücre araştırmalarıyla ilgili hazırlanmış raporlarda embriyonik kök hücre olarak sınıflandırılmış olsa da tedavi edici klonlama sonucu elde edilen embriyonlardan çıkarılan kök hücrelerin statüsü farklıdır.(10) Zira, burada elde edilen embriyo, embriyo için verilen tanımın dışında kalmaktadır. Klonlanmış embriyoları elde ederken somatik hücre transferi yöntemi uygulanmaktadır.(11) Bu yöntem, bir kadından alınan yumurtanın çekirdeği çıkarılmış üreme hücresiyle, kök hücreden yararlanması düşünülen kişinin somatik hücresinden alınan çekirdeğin nükleer yöntemle döllenip, somatik hücre sahibinin klonu yapay bir embriyo elde etme mantığına dayanmaktadır.(12) Somatik hücre transferi yöntemiyle elde edilen, klonlanmış embriyondan beklenen fayda ise; kök hücre tedavisinden yararlanacak kimsenin vücudunun bağışıklık sisteminin reddi riskini doğurabilecek, başka bir organizma olan, embriyodan elde edilmiş kök hücreleri kullanmak yerine tedaviden yararlanacak kişinin organizmasıyla tamamen aynı genetik şifreye sahip klon embriyodan elde edilmiş kök hücrelerin kullanılarak bağışıklık sisteminin reddi ihtimalini ortadan kaldırması olarak ifade edilmektedir.(13) Ayrıca fetüsten elde edilen kök hücreler de vardır. İstenmeyen gebeliklerin sonlandırılması sonucu alınan fetüsün organlarından kök hücre elde edilme ihtimali olduğu gibi, sıkça duyduğumuz kordon bağı kanından da embriyo elde edilebilmektedir.(14) Kök hücrelerin farklılaşma kabiliyetinin yüksekliği, tıpta iyileştirici uygulamalarda kullanılabilirliliğini artırmaktadır. Bu bağlamda, çeşitli yerlerden elde edilen kök hücrelerin farklılaşma kabiliyetinin değiştiği söylenmektedir. Embriyonik kök hücrelerin diğerlerine oranla farklılaşma kabiliyetlerinin üstün olduğu iddia edilse de, son araştırmalarda erişkin kök hücrelerinin de embriyonik kök hücreler kadar farklılaşabileceği yönünde umutların arttığı bildirilmektedir.(15) Bununla birlikte, embriyonik kök hücre araştırma taraftarı kimseler bu çalışmaların sonuçlarının abartıldığını, dolayısıyla embriyonik kök hücre araştırmalarının önünün kapatılmasının amaçlandığını iddia etmektedir.(16)Sonuç olarak, farklılaşma kabiliyeti şimdilik daha üstün görünen embriyonik kök hücrenin tedavi amaçlı kullanımına yönelik yoğun çalışmalar devam etmektedir. 2. KÖK HÜCRE ARAŞTIRMALARI ÜZERİNDE TARTIŞMALAR Kök hücre araştırmaları üzerinde kopan tartışmalar çeşitli eksenlerde sürmektedir. Başlıca konular, embriyonun hukuki ve ahlaki statüsünün sorgulanması, bir başka deyişle, hayatın başlangıcı meselesi ve bilim çevrelerinde -halen tedavi edici kullanımı bulunmamakla birlikte- tedavi amaçlı klonlama diye tabir edilen somatik hücre transferi yöntemi ile elde edilmiş klon embriyonun kullanımıdır. Ayrıca, kök hücre araştırmalarının mali yükünün ağır olduğu, diğer araştırmalara ayrılacak payın azaltılmaması gerektiği, araştırmalar sonucu bulunacak tedavinin yalnızca belirli bir kesime ulaşabilirken, yoksul insanların bu tedavinin nimetlerinden yararlanamayacağı ve araştırmalarda kadın üreme hücresinin kullanılmasının ekonomik yönden zayıf kadınların istismarını doğurabileceği tehlikesine de dikkat çekilmektedir. Son olarak, kök hücre araştırmalarında hasta hakları bağlamında sakıncalar olduğu, yoğun olarak araştırmalar yapılsa da hâlâ -özellikle embriyonik kök hücre araştırmalarında- çoğu durum için kök hücrenin tedavi edici bir yöntem olmadığı belirtilmektedir. 2.1. EMBRİYONUN HUKUKİ ve AHLAKİ STATÜSÜ Embriyonik kök hücre elde ederken kök hücrenin içinden alındığı embriyo zarar görmekte ve kullanılamaz hale gelmektedir. Bu noktada sorun, embriyonun araştırma amacıyla kullanımının etik olup olmadığı, bunun ötesinde üçüncü bir kişi yararına embriyonun yok edilmesinin embriyoyu araçlaştırdığı ve embriyonun araştırma ve tedavi amaçlı kullanımının etik olmadığı itirazlarıdır. 2.1.1. EMBRİYO ÜZERİNDE ARAŞTIRMA YAPILMASINA KARŞI OLANLARIN GEREKÇELERİ Embriyonun araştırmalarda kullanılmaması gerektiğini savunanlardan bazıları embriyonun insan gelişiminin bir parçası; cenin, bebek, çocuk, ergin, yetişkin ve yaşlılık gibi insanın varolma sürecinin ayrılamaz basamaklarından olduğunu iddia etmektedir.(17) Embriyo bu sürecin parçası olduğundan insandır ve diğer insanlar gibi insan şeref ve haysiyetiyle donanmış, insan haklarının koruması altındadır. Sonuç olarak, embriyonun üçüncü bir kişinin tedavisi amacıyla yok edilmesi düşünülemez. Kant’ın “insan araç değil amaçtır” söylemine dayanılarak, bir insanın üçüncü bir kişinin tedavisinde kullanılmak amacıyla yaratılmasının insan onurunu zedelediği belirtilmektedir.(18) Kök hücre araştırmalarında embriyonun kullanımıyla insanın yaşam hakkının ihlal edildiği savının en ateşli savunucuları arasında Hıristiyan öğretisinden gelenler bulunmaktadır.(19) Onlara göre embriyonun araştırmalarda yok edilmesi insanın araçsallaştırılması ve yaşam hakkının ihlalidir.(20) Embriyonun insan olduğu ve insanla eşdeğer saygı görmesi gerektiğini savunanların dayandığı gerekçeler üç temel üzerinde yükselir.(21) POTANSİYELLİK: Embriyo potansiyel bir insandır(22) Birleşmeden itibaren embriyonun insan olmaya giden yolda ilerlediğini kabul ederek, ona insan statüsünün tanınması gerekir. Buna karşılık embriyonun insan vasfında olmadığını düşünenlerden bazıları, embriyonun kişiliği belirleyen temel niteliklerden yoksunluğunu ileri sürüp, embriyonun düşünemediğine, acı çekemediğine ve sinir sisteminin oluşmadığına dikkat çekmiştir.(23) Yine bu yönde embriyonun oluşumundan sonra 30 ila 35. günler içinde sinir hücrelerinin geliştiği ve bu tarihin önemli olduğunu belirtenler olduğuna değinilmiştir.(24) Ancak üzerinde önemle durulması gereken “embriyonun beyin fonksiyonu ve sinir sistemi geliştiğinde insan olarak kabulünün gerektiği söyleminin” ne kadar ileri gidebileceğinin belirsizliğidir. Bu görüşün sakıncalarını açıklarken, beyin ve sinir faaliyetlerinin insan hayatının varlığı meselesinde bir defa belirleyici olduğunda komadaki hastaların, yeni doğmuş çocukların hatta uykudakilerin yaşamıyor sayılabileceğinin altı çizilmektedir.(25) BİREYSELLİK, AYNILIK ve SÜREKLİLİK: Bu bağlamda iddia edilen ise: Çekirdek füzyonundan (embriyonun meydana geldiği an) sonra genetik şifresi tamamlanmış, benzersiz bir bireyle karşı karşıyayız.(26) Bu insandır. İnsan gelişimi kesintiler olmaksızın akıp giden bir süreçtir. Bu süreci farazi ayrımlarla bölmemek gerekir. Bu ayrımlar keyfidir. Her safhaya aynı koruma sağlanmalıdır.(27) Bununla birlikte embriyonun insan gibi muamele görmesi gerektiğini, gelişme sürecinde insan ile insan olmayacak embriyolar arasında keyfi belirlemelerin olmaması gerektiğine işaret edenler (28) olduğu gibi embriyonun insan sayılmasa da özel bir saygı görmesi gereğini savunanlar da vardır.(29) 2.1.2. EMBRİYO ÜZERİNDE ARAŞTIRMA YAPILMASINA KARŞI OLMAYANLARIN GEREKÇELERİ Embriyo üzerinde araştırma yapılmasına karşı olmayanları tek başlık altında toplamak zor olabilir. Zira araştırmada kullanılan embriyoların ortaya çıkarılma amacına göre fikirler değişebilmektedir. Tüpte döllenme sonucu -yani kısırlık tedavisinde yeni bir insan ortaya çıkarmak amaçlı- ortaya çıkarılan embriyolardan ana rahmine enjekte edilmeyip saklanan ya da yok edilecek olanların (fazlalık-artık) araştırmalarda kullanılmalarını etik görüp, yalnızca araştırma amaçlı embriyo meydana getirmeyi kabul edilmez bulanlar vardı.(30) Bazıları, yaşam hakkının mutlak olmadığını ve sınırlanabildiğini hatırlatıp, embriyo araştırmalarında varolan niyetin -yani amansız hastalıklara derman bulmanın- yaşam hakkını sınırlayabileceği iddiasındadır.(31) Orantılılık ilkesine dayanan bu savın çok temelsiz olduğu ve kötüye kullanılma yolunun açık olduğunu hatırlatarak, terk edilmesi gerektiğini düşünmekteyim. Zira, araştırma yapmak amacıyla bir kişinin yaşamına son vermenin yaşam hakkının istisnalarından biri olmayacağı, iki menfaatten yaşam hakkının bariz olarak ağır bastığı söylenmelidir.(32) Doğum kontrol yöntemleri ile embriyonun yok edilmesinin zaten gerçekleşmekte olduğu(33), doğum kontrol yöntemleri haricinde embriyoların yok olmasının doğal yollardan gerçekleştiğinde buna göz yumulduğu, cinsel birleşme sonucu döllenen yumurtaların %70’inin doğal yollardan dışarı atıldığı söylenmektedir.(34) Dolayısıyla, embriyoların araştırmalarda korunması isteminin gerçekçi olmadığı düşünülmektedir. embriyonun dışarı atılımı embriyonun kalitesinden, bazen de kadının bir hastalığından kaynaklanmaktadır. Araştırmalarda kullanılan embriyoların -özellikle tüpte döllenme yöntemiyle elde edilip fazlalık olanların- doğal yollardan atılanlar gibi insan olma potansiyeli olmayan veya ana rahmine yerleştirilmesi halinde doğacak bebeğin sakat olabileceği belirtilip bu nedenle kısırlık tedavisinde kullanılmadığı, ancak embriyodan kök hücre alınarak bunlardan yararlanılabileceği ifade edilmektedir.(35) Embriyonun insan statüsünde olmadığı ve bu nedenle araştırma sırasında yok edilebileceği savının ardında duranların en güçlü iddiası insan yaşamının ana rahmine yerleşme anında başlamasıdır.(36) Ana rahmi dışında embriyonun gelişme şansı yoktur. Buradan hareketle insan olmanın temel koşulunun çevre olduğu belirtilmektedir. Embriyonun ana rahmine yerleşmesi embriyonu pasif potansiyellikten çıkarıp aktif potansiyel hale sokmaktadır.(37) Embriyonik kök hücre araştırmalarında kullanılan/kullanılması önerilen embriyoların tüpte döllenme (in vitro) yöntemiyle ortaya çıkarıldığı ve bunların ana rahmine yerleştirilmeden kullanıldığı göz önüne alındığında, insan statüsüne kavuşmamış hücreler yığını olan embriyoların özel olarak korunması için bir dayanak da kalmaz. Embriyonun oluştuğu anda genetik olarak eşsiz olduğunu, dolayısıyla bu anda insanın kişiliğinin meydana çıktığını savunanların tezini çürütmek için, insanın genetik şifreye indirgenmesinin yanlışlığı vurgulanmaktadır.(38) İnsan genetik yapısının ötesinde bir varlıktır. Genetik yapısı bir olan herkesin aynı, bir kişi olduğu savı tek yumurta ikizleri örneğiyle çürür. Embriyo oluştuktan sonra 13., 14. güne kadar bölünme ihtimali vardır. Sonuç olarak insan genlerin özetinden ibaret değildir. Embriyo oluştuktan 14 güne kadar bölünebilir ve tek yumurta ikizleri oluşur; ancak ikizlerin ayrı ayrı yaşama hakkı vardır, ikizlerin kişiliği bir değildir.(39) Eğer benzersiz gen yapısı bizleri eşsiz kılan niteliğimizse bu olay 13., 14. gün sonunda olacağından kişiliğin o an meydana geldiğini kabul etmemiz gerekir.(40) Ancak genleri aynı olsa da, her insanın ayrı kişiliği olduğu bir gerçektir. Şuan için ana rahmine olan ihtiyaç mutlaktır. Dolayısıyla embriyonun gelişimi için ana rahminin vazgeçilmez olduğu açıktır. Ancak ana rahmine ihtiyacı ortadan kaldıracak makinelerin ve yapay ortamların yakın gelecekte icadının mümkün olduğu ileri sürülerek ana rahminin gerekliliğini savlarının başlıca teması yapanlara karşı gelinmeye çalışılsa da, bu şimdilik spekülasyondan ibarettir. Yakın gelecekte bu durum gerçekleşse dahi, ana rahminin yerine yine rahim görevi görecek bir makine geçeceğinden çevre şartları teorisi geçerliliğini koruyacaktır. Embriyo kendiliğinden gelişemeyecektir.(41) 2.2. TEDAVİ EDİCİ/AMAÇLI KLONLAMA ve ÜREME AMAÇLI KLONLAMA 1997 yılında ilk defa bir memelinin klonlandığı açıklandığında dünya klon koyun Dolly’i şaşkınlıkla karşılamıştır; ancak bilim ve teknolojinin ilerleme hızı birçoklarının gözünü korkutmuştur. Klonlama işlemi aseksüel üremeyi sağlar ve doğan klon, klonlandığı organizmayla aynı genetik şifreyi taşır. Embriyonik kök hücre araştırmaları üzerindeki fikir ayrılığının aksine, üreme amaçlı klonlama, taşıdığı hukuki ve ahlaki sakıncalar nedeniyle çoğunlukla kabul edilir bulunmamaktadır.(42) Embriyonik kök hücrelerin iyileştirme gücünün keşfiyle birlikte, klonlanmış embriyonun asıl bireyin genetik yapısıyla özdeş olması nedeniyle, bu embriyolardan alınan kök hücrelerin tedavi aşamasında büyük kolaylıklar sağlayacağı; zira tedavisi yapılan kimsenin bağışıklık sisteminin reddi ihtimalini bu sayede aşılabileceği belirtilmiştir.(43) Bu amaçla klonlanmış embriyolardan kök hücre elde etme araştırmaları yapılmaktadır ve bu yöntem yukarıda da açıklandığı gibi tedavi edici klonlama olarak adlandırılmaktadır. Bu tartışmalar ekseninde üreme amaçlı klonlama ile tedavi edici klonlamanın arasında tek farkın amaçlarının başka oluşu olduğu, tedavi edici/amaçlı klonlamada, klonlanan embriyo, ana rahmine yerleştirilmeyip, embriyonun bloskot döneme değin gelişmesine izin verilip, klonlanan asıl bireyin tedavisi amacıyla embriyodan kök hücre ayrıştırılmaktadır. Klonlamada temel kaygı, klonlananın onurunun hiçe sayılması, asıl bireyin ihtiyacı için, yani bir araç olarak var olmasıdır. Tedavi amaçlı klonlamaya karşı olanlar, embriyonun hukuki statüsünün hassaslığı yanında, tedavi amaçlı elde edilen embriyoların üreme amaçlı ana rahmine yerleştirilme riskinin göze alınmayacak kadar büyük olduğunu ileri sürmektedirler.(44) Tedavi amaçlı klonlama olarak adlandırıldığı halde, halen araştırma safhasında bulunması sebebiyle bu terimin yanlış anlaşılmalara yol açabileceği eleştirisi de yapılmaktadır.(45) 2003 yılı sonlarında hazırlanan bir rapor, tedavi amaçlı klonlamanın sadece bir varsayım olduğu bildirmiştir(46); ancak Güney Koreli araştırmacılar Şubat 2004’te insan embriyolarını klonlayıp, bunlardan kök hücre aldıklarını ilan etmiştir.(47) Tedavi Edici klonlamadan beklenen yararın, organ ve doku naklinde meydana gelebilecek bağışıklık sistemi reddi riskini aşmak olduğu dikkate alınarak, aynı sonucu verebilecek erişkin kök hücre tedavisini geliştirmek için, erişkin kök hücre araştırmalarına ağırlık verilmesi önerilmektedir.(48) 2.3. KÖK HÜCRE ARAŞTIRMALARININ MALİ KÜLFETİ ve KÖK HÜCRE TEDAVİSİNE ULAŞILABİLİRLİK SORUNU Kök hücre araştırmalarından beklenen sonuçlar hasta ve hasta yakınlarında büyük umutlar doğurmuş olsa da, bu araştırmalar oldukça pahalı olup büyük yatırımları gerektirmektedir.(49) Kök hücrenin iyileştirme yeteneğinin mucize olarak gösterilmesi gözleri bu araştırmalara çevirmiş, araştırmaların hızlandırılıp bir an evvel sonuca ulaşılması istemi kamuoyunda ses bulmuştur. Ancak kök hücre tedavisinin Parkinson, Alzheimer, kalp hastalıkları gibi daha ziyade yaşlılık hastalıklarına yönelik olduğu, dolayısıyla özellikle az gelişmiş ve gelişmekte olan ülkelerde hâlâ yaygın olarak rastlanan sarılık, sıtma vb. hastalıkların yüksek oranda can kaybına neden olurken, araştırmaların daha ziyade yaşlı ve zengin kesimlerin yararlanacağı kök hücre tedavisi üzerine yoğunlaştırmanın kabul edilemeyeceği belirtilmektedir.(50) Bir diğer nokta kök hücre tedavisine ulaşılabilirlik sorunudur. Halihazırda varolan tedavilere ulaşamayan, gerekli ilaçları satın alamayan kişilerin sayısı göz önüne alınırsa kişiye özel bir tedavi sağlayacak olan kök hücre tedavilerinin tutarını karşılayabilecek kimselerin çok az olacağı söylenmektedir.(51) Kök hücre tedavilerinin kişiye özel olması, bu anlamda ilacın patentinden kaynaklanan artı fiyatın olmaması, tedavi maliyetini azaltacağı iddia edilse bile;(52)şu anki teknoloji ile erişkin kök hücrenin dahi ayrıştırılması ve tedavi amacıyla geliştirilmesi oldukça masraflı olmaktadır.(53) Buna embriyonik kök hücrenin elde edilmesi yöntemindeki zorlukları ve uzun prosedürü eklersek, elde edilecek tedavinin ücretinin herkesin karşılayacağı bir meblağın üzerinde olacağı kanısındayım. 2.4. KADININ İSTİSMARININ ENGELLENMESİ Embriyonik kök hücre araştırmalarında kadından alınan yumurta hücresi kullanılmaktadır. Bu konunun kadının istismarına açık yüzünü Güney Kore’de yapılan bir araştırma göstermektedir. Güney Kore’de yapılan araştırmalarda tedavi edici klonlama ile elde edilen embriyolardan kök hücre ayrıştırma işlemi sırasında, 242 insan yumurta hücresi kullanıldığı, bu yumurtalardan 30 embriyo klonlanabildiği ve bunlardan sadece bir tanesinden kök hücre ayrıştırılabildiği bildirilmiştir.(54) Araştırmada kullanılan yumurta hücreleri bağışı için binlerce dolar ödendiği; ayrıca yine bu araştırmaya katılan kadın bilim insanlarının da araştırmada kullanılması için embriyo bağışladığı yazılmaktadır.(55) Sonuç olarak yapılan araştırmalarda başarılı sonuç elde etmek için fazlasıyla verici gönüllü kadına ihtiyaç olduğu, bu deneylerde embriyo elde etmenin zorluğunu göstermektedir. Yumurta hücresinin alınması sırasında uygulamalar sonucu, kadının belirli bir risk altına girdiği, hatta nadir de olsa işlemin ölümle dahi sonuçlanabileceği, bununla birlikte, araştırma sonrası kısırlık gibi sağlık sorunlarıyla daha sık karşı karşıya kalabileceği bildirilmektedir.(56) Ayrıca, yukarıdaki örnekte de görüleceği üzere, asıl tehlike maddi zorluklar içindeki kadınların kök hücre araştırmalarına para karşılığı katılma ihtimalidir. Kısırlık tedavisi yöntemi olarak uygulanan tüpte döllenmede de yumurta hücresine ihtiyaç duyulduğu, aynı şekilde burada da kadının istismarının mümkün olduğu söylense de, kök hücre araştırmalarında yumurta hücresinin alınması işlemi öncesi kadının hormon alması ve bir dizi uygulamaya maruz kalması iki uygulama arasında farklar olduğunu göstermektedir. Embriyonik kök hücre araştırmalarında ki bu zahmetli prosedürün gönüllü bağışları azalttığı söylenmektedir.(57) Kök hücre araştırmaları dolayısıyla kadın vücudunun meta olarak kullanılmasının önü alınmalıdır. 2.5. KÖK HÜCRE ARAŞTIRMALARININ KLİNİK AŞAMASI Embriyonik kök hücre araştırmaları klinik aşamada hem denemelere katılanların korunması hem de embriyonik kök hücre vericilerinin mahremiyetlerine saygı gösterilmesini gerektirmektedir.(58) En büyük güvenlik sorunlarından biri klinik aşamada kullanılacak embriyonik kök hücrenin genetik bozukluklar barındırması ya da ciddi enfeksiyonlar taşımasıdır, ayrıca kök hücre nakli dolayısıyla başka bir organizmadan yapılan transfere uyum sağlanması için alınacak ilaçların yaratacağı zararın da dikkate alınması gereği vurgulanmıştır.(59) Embriyonik kök hücreden kaynaklı sorunlarda vericilerle yeniden temasa geçme zorunluluğu(60) ile vericilerin mahremiyetlerinin korunmasına saygı gösterilmesi arasında dengenin sağlanması gerekmektedir. Bu bağlamda vericilerle yeniden temasa geçilmesi ihtimali gözetilip, vericiler araştırmada kullanılmak için rıza verirlerken, yeniden temasa dair iznin de alınması önerilmektedir.(61) Ayrıca vericilere dair bilgilerin özenle saklanması, bilgilerin tutulduğu bilgisayarların internet bağlantılı olmaması gerektiği, bilgileri tutan kişilerin bu hususta eğitilmesi ve vericilere dair bilgilere ulaşabilecek kişilerin araştırma ekibinin dışından olması gerektiği yazılmaktadır.(62) Klinik aşamada bir diğer önemli nokta, alıcıların (tedavi edilenlerin) vermesi gereken aydınlanmış rızanın detaylandırması gereğidir. Araştırmacılar, katılan alıcıya daha önce böyle bir yöntemin denenmediğini, kendilerinin de umdukları iyileşmeyi elde edip edemeyeceklerini bilmediklerini izah etmelidir.(63) Ayrıca araştırmaya katılan kişiye konunun etik boyutları anlatılarak, kişinin ahlaki ve dini inançlarına saygılı olunması gerekmektedir.(64) Klinik aşamada araştırmacılar risk yarar değerlendirmesi yapıp, özellikle tümör riski gibi ölüme kadar götürebilen tehlikeler yaratacak riskler almamalı ve geri döndürülemez sonuçları en aza indirgenmelidir.(65) 3. ULUSLARARASI HUKUK METİNLERİ Kök hücre araştırmaları hakkında uluslararası alanı, Birleşmiş Milletler, Avrupa Konseyi ve Avrupa Birliği’ndeki gelişmeler ve hukuk metinleri çerçevesinde üç başlık altında incelemek istiyorum. Avrupa Birliği düzenlemeleri bağlamında, Avrupa Birliği ülkelerinden bazılarının konu ile ilgili düzenlemelerine de değineceğim. 3.1. BİRLEŞMİŞ MİLLETLER ÇATISI ALTINDA DERİN AYRILIK 2001 Aralık’ında BM Genel Kurulu, İnsanın Üreme Amaçlı Klonlanmasına Karşı Uluslararası Sözleşme’nin ayrıntıları üzerinde çalışmak için bir Ad Hoc komite kurmuştur.(66) Fransa ve Almanya’nın sunduğu teklif -geniş kapsamlı bir yasağın tartışmalara yol açıp acilen düzenlenmesi gereken bir konuda uluslararası hukukta boşluğa mahal verebileceğinden-yalnızca üreme amaçlı klonlamanın yasaklanmasını gözetmiştir.(67) Ancak Amerika Birleşik Devletleri ile İspanya’nın başını çektiği grup her ne surette olursa olsun -hem üreme hem tedavi amaçlı klonlamayı kapsayan- klonlamanın yasaklanmasını istemiştir.(68) Bütün ülkeler üreme amaçlı klonlamaya karşı olmalarına karşın bir metinde uzlaşıya varılamamıştır. 2002 yılı toplantılarından sonuç çıkmayınca, Ad Hoc komite ve Çalışma Grubu 2003 Ekim ayında yeniden toplanmıştır. BM Hukuk Komitesi, bir uzlaşma umudu görmediğinden Genel Kurul’a sunulmak üzere iki yıllık bir erteleme tavsiyesi kararı almıştır. Fakat kapsamlı yasağı destekleyenler bu tavsiyeden memnun kalmamış; zira iki yıllık erteleme süresinde, bilim çevrelerinden klonlamayı destekleyenlerin, uluslararası düzeydeki yasal boşluktan yararlanarak, klonlamayı uygulayabilme ihtimalinden endişe etmiştir.(69) Sonuçta iki yıllık erteleme talebi Genel Kurul’da kabul görmemiştir.(70) Böylece 2004 Ekim ayında konu, ilgili komite tarafından yeniden ele alınmıştır. Kosta Rika, altıdan fazla ülke adına toptan bir yasak getiren sözleşmenin taslağını sunmuştur(71). Tasarıda, herhangi başka bir amaçla yapılan klonlamaya izin verilmesi halinde bu uygulamaların üreme amaçlı olup olmadığını denetlemenin çok zor olacağı, ayrıca klonlanmış insan embriyosu yaratımının ve yok edilmesinin yanlış olduğu, zira bunun insan hayatına nesne ve ürün olarak davranılmasını doğuracağı ileri sürülmüş ve bu toptan bir yasağın gerekçesi olarak gösterilmiştir. Alternatif bir taslak Belçika tarafından sunulmuştur.(72) Taslak üreme amaçlı klonlamanın yasaklanmasını, diğer amaçlarla klonlama konusunda üç seçenek getirilmesini önermektedir. Bunlar klonlamayı amaç gözetmeksizin yasaklama, moratoryum uygulama ve ulusal mevzuatındaki düzenlemelerle uygulamanın kötüye kullanımın önlenmesi olarak sıralanabilir. Böylece acilen düzenlenmesi gereken bir alandaki boşluk doldurulmuş, bu konu üzerinde çalışan uygulamacı ve araştırmacılara somatik nükleer yöntemle elde ettikleri embriyoları ana rahmine yerleştirmemeleri için uluslararası bir uyarı yapılmış olacaktır. İki önerinin de tam olarak kabul görmeyeceği ortaya çıktığında İtalya üçüncü bir öneri ile bir deklarasyon hazırlanması fikrini dile getirmiştir.(73) Bu deklarasyonun ana teması üye devletleri klonlama ile insan yaratılmayı önlemek için tedbir alamaya ve araştırmalar esnasında kadının istismarının önlenmesi adına adım atmaya, yaşam bilimlerinin insan onuruna herhangi bir durumda saygılı olmaya çağrılması teşkil etmektedir. 8 Mart 2005 tarihinde Kosta Rika’nın sunduğu taslak metin, 84 lehte oya karşı muhalif 34 ve 37 çekimser oyla BM İnsan Klonlamasına Dair Deklarasyon adıyla kabul edilmiştir. Uluslararası hukuk çerçevesinde yasal bağlayıcılığı olmayan bu metinin kabul edilme prosedürü ve lehte oyların çekimser ve aleyhte oyların toplamının biraz üzerinde kalması dünyada kök hücre araştırmaları konusundaki derin fikir ayrılıklarının olduğunu göstermektedir.(74) Deklarasyon şöyledir:(75) Üye devletler yaşam bilim uygulamalarında insan yaşamının yeterli olarak korunması için bütün gereken tedbirleri kabul etmeye çağrılır, Üye devletler insan onuru ve insan yaşamını korumakla bağdaşmadığı ölçüde insan klonlamanın bütün formlarını yasaklamaya çağrılır, Üye devletler insan onuruna aykırı olabilecek genetik mühendisliği tekniği uygulamalarını yasaklamak için gerekli tedbirleri kabul etmeye çağrılır, Üye devletler yaşam bilim uygulamalarında kadının istismarına mani olacak tedbirler almaya çağrılır, Üye devletler a ve d paragraflarını ulusal mevzuatlarında bir ertelemeye gitmeksizin etkili bir biçimde yürürlüğe sokup uygulamaya çağrılır, Üye devletler yaşam bilimleri dahil tıbbi araştırmalar için ayırdıkları bütçelerinde, gelişmekte olan ülkelerde özellikle etkili olan sıtma, tüberküloz ve HIV/AIDS gibi küresel aciliyeti olan konuları göz önünde bulundurmaya çağrılır. Deklarasyon, ahlaki tartışmalarda değindiğim kadının istismarı, araştırmalar için fonların adil dağıtımına değinerek bu noktalarda önlem alınmasını isterken; klonlamanın bütün formlarının yasaklanmasını istemektedir. Ancak yasal bağlayıcılığı olmayan “soft law” diye tabir edilen böyle bir metinde bile lehte oyların, çekimser ve aleyhte oyları az bir farkla geçtiği dikkate alınırsa uluslararası alanda varolan derin ayrılıkların şimdilik kapatılması zor görünmektedir. 3.2. AVRUPA KONSEYİ BELGELERİ ile İNSAN HAKLARI ve TIP SÖZLEŞMESİ Avrupa Konseyi bünyesinde embriyonun araştırma amaçlı kullanımı konusunda yasal olarak bağlayıcı iki sözleşme mevcuttur. Türkiye’nin de taraf olduğu Biyoloji ve Tıbbın Uygulanması Bakımından İnsan Hakları ve İnsan Haysiyetinin Korunması Sözleşmesi’nin (İnsan Hakları ve Biyotıp Sözleşmesi) Tüpte embriyonlar üzerinde araştırma başlıklı 18. maddesinin özellikle ikinci fıkrası kök hücre araştırmaları açısından önem teşkil etmektedir.(76) Bu hükümde “sadece araştırma amaçlarıyla insan embriyonlarının yaratılması yasaklanmıştır”. Bu hüküm ışığında embriyonik kök hücre araştırmaları amacıyla embriyo meydana getirilemeyeceği açıksa da; tüpte döllenme yöntemiyle kısırlık tedavisi amacıyla meydana getirilmiş embriyoların araştırmalarda kullanılması meselesi gözetilmemiştir. Dolayısıyla tüpte döllenmiş embriyolardan ana rahmine yerleştirilmeyenlerin araştırmalarda kullanımı mümkündür. Ayrıca sözleşmede embriyonun tanımı yapılmamıştır.(77) Bu anlamda tedavi edici klonlama sonucu elde edilen embriyonun sözleşme çerçevesinde değerlendirilip değerlendirilemeyeceği taraf devletlerin yorumuna kalmıştır. Sözleşmenin 29. maddesi bu sözleşmenin hükümlerinin yorumunu Avrupa İnsan Hakları Mahkemesi’ne bırakmıştır. Mahkemenin doğrudan embriyo ile ilgili kararı yoksa da, ceninin yaşam hakkı ile ilgili bir konuda, düzenlemenin devletin takdir yetkisine dahil olduğunu kabul etmiştir.(78) Biyoloji ve Tıbbın Uygulanması Bakımından İnsan Hakları ve İnsan Haysiyetinin Korunması Sözleşmesi’ne Ek, İnsan Kopyalanmasının Yasaklanmasına İlişkin Protokol(79) somatik hücre çekirdeği transferi yöntemi kullanılarak memelilerde klonlama yapılması sonrasında, bu uygulamaların insan üzerinde denenebilme ihtimaline karşı, uygulamayı yasaklamak niyetiyle hazırlanmıştır. Ancak önsözünde, insanın, bilinçli olarak genetik özdeşinin yaratılması suretiyle, bir araç haline getirilmesinin, insanlık onuruna aykırı olduğunu bildirmek suretiyle tedavi edici klonlamadan ziyade genetik özdeş yaratmaktan bahsettiğinden, üreme amaçlı klonlamayı yasaklamak istediği söylenebilir. Birinci maddesinde “Bir insana genetik olarak özdeş, canlı veya cansız başka bir insan yaratmayı amaçlayan herhangi bir müdahale yasaklanmış”, aynı maddenin ikinci fıkrasında “genetik olarak özdeş”ifadesi bir insanın başka bir insanla aynı nükleer genetik seti paylaşması olarak tanımlanmıştır. Bu hükümlerden de, klonlanmış embriyonun üreme amaçlı, bir insan yaratma niyetiyle kullanımının yasaklanırken; tedavi amacıyla, ana rahmine yerleştirilmeden kullanımının mümkün olduğu sonucunu çıkarmak mümkündür.(80) Avrupa Konseyi Parlamenter Asamblesi Ekim 2003 tarihinde aldığı kararda, İnsan Hakları ve Biyotıp Sözleşmesini hatırlatarak, araştırma amaçlı embriyo ortaya çıkarmanın yasaklandığını belirtikten sonra, araştırma amaçlı insanın yok edilmesinin yaşam hakkının ihlali ve insanın araçlaştırılması ahlaki yasağına aykırı olduğuna işaret edip, üye devletleri aşağıda belirttiğim önlemleri almaya davet etmiştir.(81) ı-İnsan gelişiminin her aşamasında yaşam hakkına saygı gösterdiği sürece kök hücre araştırmalarının ilerletilmesi. ıı-Sosyal ve etik ayrımlara neden olmayan rejeneratif tıpta yeni metotları geliştirmek ve plupotent hücrelerin kullanımının yükseltilmesi için bilimsel teknikleri teşvik etme. ııı-Araştırma amacıyla insan embriyosu meydana getirilmesi yasağının etkili kılınması için Oviedo Sözleşmesi’nin imzalanıp onaylanması. ıv-Erişkin kök hücresi alanında ortak Avrupa temel araştırma programlarının ilerletilmesi. v-Kök hücre araştırmalarında insan embriyosunun yok edilmesine izin veren ülkelerde araştırmalara yetkili ulusal kurumlarca izin verilmesi ve araştırmaların izlenmesi vı-Ulusal mevzuatın koruduğu etik değerleri ihlal eden uluslararası araştırma programlarına katılmamaları ve böyle ülkelere bu araştırmalar için doğrudan ya da dolaylı hibelerde bulunmamaları beklenmektedir. vıı-Araştırmaların etik boyutuna, finansal ve fayda gözeten boyutuna nispeten öncelik vermek. vııı-Demokratik sorumluluk ve şeffaflık ile güçlendirilmiş bakışla sivil toplumun temsilcileri ve bilim adamlarından müteşekkil insan kök hücresi projelerinin çeşitli açılardan tarışacak oluşumlar kurulması teşvik edilmelidir. 3.3. AVRUPA BİRLİĞİ ve BAZI AVRUPA BİRLİĞİ DEVLETLERİNDEKİ KÖK HÜCRE ARAŞTIRMALARINA DAİR HUKUKİ DURUM 3.3.1. GENEL OLARAK AVRUPA BİRLİĞİ’NİN EMBRİYONİK KÖK HÜCRE ARAŞTIRMALARINA BAKIŞI Avrupa Komisyonu Bilim ve Yeni Teknolojilerde Etik Grubu, Kasım 2000’de embriyonik kök hücre araştırmaları konusunda kapsamlı bir rapor hazırlayıp fikirlerini açıklamıştır.(82) Öncelikle, Avrupa Birliği’nin çoğulcu karakterini vurgulayıp, farklı felsefeler, ahlaki ve yasal yaklaşımlar ile ayrı kültürel bakışların demokratik Avrupa toplumunun yapısının etik boyutunun içinde saklı olduğunu bildiren Grup, embriyonun ahlaki statüsünün yükseltilmesi gerekliliğinin altını çizerken(83), Avrupa’daki çoğulculuk bağlamında embriyo araştırmalarını yasaklayanların da izin verenlerin de varlığını belirterek, ikincilerin insan onuruna saygıyı embriyonik araştırmalarda sağlamalarını ve insan embriyosunun araçlaştırılması ve deneylerin suiistimal edilmesi tehlikesini önleyecek düzenlemeler yapma gereğini zikretmiştir.(84) Kısırlık tedavisi için meydana getirilen embriyo üzerinde araştırma izni olması durumunda, ağır yaralanmalar ve hastalıklara tedavi bulmak için yürütülen araştırmalara yasak uygulamanın zor gözüktüğü bildirilmektedir. Sonuç olarak, bu programda tanımlanmış yasal ve etik mecburiyetlere uyan araştırmaların Avrupa Birliği araştırma çerçeve programının dışında tutulmaları için bir gerekçe olmadığı söylenmektedir. (Bu arada embriyonun araştırmalar sırasında yok edildiği de hatırlatılmaktadır)(85) Embriyonik kök hücre araştırmalarına izin verilmesi durumunda en üst düzeyde şeffaflık ile durum bazında değerlendirme yapılarak ve yüksek seçicilikle uygulanması gereğini vurgulayarak, AB kamu denetiminin gerektiği belirtilmiştir. Grup, araştırma amacıyla embriyo meydana getirilmesi niyetinden -bunun insan hayatını araçlaştıracağı öngörüsü ile- kaygı duyarak, alternatif metotları önermekte ve fazlalık, ıskartaya çıkmış embriyolar varken, araştırma amaçlı embriyo meydana getirilmesini etik olarak uygun bulmadığını beyan etmektedir. (86) Grup, somatik nükleer transfer ile elde edilen embriyodan –yani tedavi edici klonlamayla elde edilen embriyo- alınan kök hücre konusunu da irdeleyerek, yetişkin kök hücrenin yeniden programlanarak tedavi amaçlı klonlama yerine ikame edilme ihtimalinin dikkate alınmasını ve bu tedavi umudunun bir çok ahlaki tartışmayı da ortadan kaldıracağının altını çizmektedir. Ayrıca tedavi amaçlı klonlama araştırmalarında kadının araçlaştırılma riskinin yükselmesi nedeniyle (yumurta kaynağı olarak) önlemler alınması gerektiğini söylemektedir.(87) Yasal bir bağlayıcılığı olmamakla birlikte Avrupa Birliği devletlerindeki birbirinden farklı düzenlemelerin varlığına işaret etmesi açısından önemli bulduğum söz konusu grubun düşünceleri, kök hücre araştırmaları konusunda Avrupa Birliği devletlerinin kendi içlerinde bile tek ses olmadığını göstermektedir. AB mevzuatı içinde tıbbi araştırmalar ve tedaviler sırasında insan kaynaklı doku ve hücrelere dair “Directive 2004/23/ec of the European Parliıament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells” in açıklayıcı notları arasında, yönergenin üye devletin embriyonik kök hücrelerle ilgili karar almasına engel olmayacağı gibi, kişi ve birey tanımının üye devletçe yapılacağı belirtilmiştir.(88) Sonuç olarak kök hücre araştırmalarına ilişkin AB devletlerinin ulusal mevzuatlarında görülen farklılıklar bu hukuk metnine konunun üye devletlerin takdir yetkisine bırakılması yansımıştır. 3.3.2. AVRUPA BİRLİĞİ ÜYESİ DEVLETLERDEKİ KÖK HÜCRE ARAŞTIRMALARINA DAİR DÜZENLEMELER Avrupa Komisyonu Araştırma Genel Yönetimi, 2001 yılından beri Avrupa Birliği devletlerinin embriyonik kök hücre araştırmalarını takip etmek amacıyla, AB üyesi devletlerdeki embriyonik kök hücre araştırmalarına dair kamuoyu tartışmalarını, bu konuda çalışan ulusal kurulların görüşlerini ve konuyla ilgili yasal durumu öğrenmek için her yıl yenilenen bir araştırma yapmaktadır.(90) Son olarak 2004 yılına dair veriler yayımlanmıştır. Araştırma, üye devletlerin yasal düzenlemelerini yedi kategoriye ayırmıştır. -İnsan embriyonik kök hücresinin fazlalık embriyonlardan elde edilmesine yasal şartlar dairesinde izin veren, ancak araştırma amaçlı embriyo meydana getirilmesi mümkün olmayan, -Embriyonik kök hücre araştırmalarına özel olarak atıfta bulunulmamakla birlikte, fazlalık embriyolar üzerinde insan embriyo araştırmalarında bazı araştırma işlemleri yapmaya izin veren yasal düzenlemesi olan, -Fazlalık embriyonlardan embriyonik kök hücre elde edilmesini yasaklayan; ancak belirli şartlar altında insan embriyonik kök hücre hattının ithaline ve kullanımına izin veren yasal düzenlemeleri olan, -Fazlalık embriyonlardan kök hücre elde edilmesini yasaklayan, -İnsan embriyosu araştırmaları ya da embriyonik kök hücreye dair yasal düzenlemesi olmayan, - Araştırma amaçlı, insan embriyonik kök hücre meydana getirilmesine izin veren devletler.(91) Bu sınıflandırmaya bağlı kalmak yerine, yalnızca fazlalık embriyonlar üzerinde araştırma yapılmasına izin veren, fazlalık embriyonlar üzerinde araştırma yapılmasına izin vermeyen ve hem fazlalık hem de araştırma amaçlı embriyo üretimine izin veren bazı Avrupa Birliği ülkelerinin konu ile ilgili ulusal mevzuatını bu üç üst başlık altında aktarmak istiyorum. 3.3.2.1 Fazlalık embriyoların kök hücre araştırmalarında kullanımına izin veren bazı devletler. Danimarka’nın 2003 yılında Medically Assisted Reproduction yasasında yaptığı düzenlemeyle, söz konusu yasanın 25. maddesi döllenmiş yumurta ve üreme amaçlı tasarlanmış araştırmalara, eğer araştırmanın amacı insan hastalıkları üzerinde uygulanacak tedaviler hakkında bilgi edinmekse, izin vermektedir. Ancak bu araştırmaların üreme amaçlı klonlama, genlerin birbirine karıştırılması, farklı türleri birleştirip melezler (hybird) oluşturmak ve ana rahmi dışında insan geliştirmeyi amaçlaması yasaklanmıştır.(92) Yunanistan, İnsan Hakları ve Biyotıp (Oveido) Sözleşmesi ve Ek Protokol’ün tarafıdır. Bununla birlikte, yeni kabul edilen kanuna göre, tüpte döllenme (in vitro) sonucu elde edilen embriyolardan artakalanların (fazlalık) araştırma ve tedavi amaçlı kullanımına izin verilmektedir. Yalnızca üreme amaçlı klonlama yasaklanmıştır. Mefhumu muhalifinden, tedavi amaçlı klonlamaya izin verildiği çıkarılabilir.(93) İlgili kanunun açıklayıcı notunda, yalnızca üreme amaçlı klonlamanın yasaklandığı belirtilip bunun tedavi edici klonlamaya izin verildiği şeklinde yorumlanması gerektiği bildirilmektedir.(94) Finlandiya’da 1999 tarihli Tıbbi Araştırmalar Yasası, embriyonun meydana gelmesinden itibaren 14 güne kadar kullanımı konusunu ve ön koşulları kapsamaktadır. İn vitro döllenme sonucu elde edilen fazlalık (supernumerary) embriyoların araştırma amaçlı kullanımına izin verilmekte; fakat araştırma amaçlı embriyo meydana getirmek yasaklanmaktadır. Bir önemli nokta da, yasa embriyoyu, üreme hücrelerinin füzyonu ile ortaya çıkan hücre diye tanımlamadığından tedavi amaçlı klonlamayla elde edilen embriyonun kullanımının yasak dışında olmasıdır.(95) Bununla birlikte üreme amaçlı klonlama yasağı ayrıca yasa tarafından zikredilmiştir. 3.2.2.2. Fazlalık embriyonlar üzerinde araştırma yapılmasına izin vermeyen bazı devletler. İtalya, 2001 yılında İnsan Hakları ve Biyotıp Sözleşmesi ve Ek Protokolü onaylamış, 2003 yılında Yapay Döllenme Yasası’nı kabul etmiştir. Yasa uyarınca yalnızca yasal olarak tanınmış çiftlere yapay döllenme hakkı verilmekte ve en fazla üç embriyo meydana getirilebilmektedir ve bütün embriyoların rahme enjekte edilmesi gerekmektedir.(96) Yasanın 13. maddesi embriyo araştırmalarını düzenlemektedir. Buna göre sadece embriyonun sağlığı için tedavi ve teşhis amaçlı ve embriyo yararına araştırma yapılabilmektedir ve hem tedavi edici hem de üreme amaçlı klonlama, ayrıca, insan/hayvan melezi yaratılması yasaklanmaktadır. 13. maddeyi ihlal eden kişiler aleyhine 50.000 ila 150.000 Euro para cezası ve 1 ila 3 yıl meslekten uzaklaştırma cezasına hükmedilmektedir. İspanya in vitro döllenme yöntemiyle elde edilen embriyolardan fazlalık olanlarının araştırmalarda kullanılmasını önlemek için İtalya’dakine benzer bir düzenleme yapmıştır. 2003 Kasım ayında bu amaçla değiştirilen Yardımcı Üreme Teknikleri Yasa’sı ana rahmine konmak için her seferinde yalnızca üç tane embriyo meydana getirilmesine izin vermektedir. Ciddi kısırlık sorunu olan çiftlerin tedavisinde daha çok embriyo meydana getirilmesine, sağlık yetkililerin bütün işlem sırasında denetlemesi ile, izin verilmesi bu kısıtlamanın istisnasıdır. 3.2.2.3. Hem fazlalık hem de araştırma amaçlı embriyo üretimine izin veren devletler. Belçika’da, Nisan 2003’te Embriyoların Araştırılmasına Dair Kanun yürürlüğe girmiştir. Kanuna göre, hastalıkların tedavisinde ve korunmada daha iyi bilgi edinmeye katkı sağladığında embriyo üzerinde araştırma yapılması mümkündür. Araştırmanın belirli sınırları vardır. Bu bağlamda, meydana geldikten 14 gün sonra embriyo üzerinde araştırma yapılamayacağı, ancak embriyonun dondurulma işlemi durumunda, bu süre hariç tutulacağı belirtilmiştir.(97) İnsan embriyosunun hayvan rahmine yerleştirilmesi, yarı insan yarı hayvan melez yaratıklar meydan getirilmesi, tedavi amaçlı olması dışında cinsiyet belirlenmesi, üreme amaçlı klonlama (yani tedavi edici klonlama yasaklanmamıştır) ve öjenik amaçlarla araştırma ve davranışlar yasaklanmaktadır. Araştırma amaçlı embriyo meydana getirmek ilke olarak yasaklanmakla birlikte getirdiği istisnalar geniştir. Yasaya göre araştırmanın hedefinin başarılması fazlalık embriyo kullanılmak suretiyle mümkün değilse, yasal mevzuata uyulmak suretiyle, araştırma amaçlı embriyo meydana getirmek mümkün olacaktır. Ayrıca kadının haklarının özellikle korunması gereğinin altı çizilmiş ve bu yönde tedbir hüküm konulmuştur. Kadını araştırmalara katılırken zorlamadan korunmak için alınan önlemler şunlardır: Ergin olması, yazılı rızanın alınması ve teşvikin bilimsel olarak adil olması.(98) Yapılacak araştırmaların denetimi için uygulanacak prosedür ise şöyledir: Araştırma projesi yerel komite ve federal komisyon olmak üzere iki oluşum tarafından gözden geçirilir. Federal komisyon dört hekim, dört bilim adamı, iki hukukçu ve dört etik ve sosyal bilimler uzmanından oluşur. Çifte onay alındıktan sonra araştırma yapılmaktadır.(99) İngiltere’de The Human Fertilisation and Embryology Authority (HFEA) embriyo kullanmak ve oluşturma hususunda ruhsat verme ve düzenleme yapmaktan sorumlu bulunmaktadır. 2001 Şubat ayında bu kurumun yetkisi embriyo araştırmaları yapma hususunda genişletilmiştir. Bundan böyle HFEA şu hallerde de embriyo araştırması yapılmasına izin verebilecektir: -Embriyo gelişimi konusunda bilgiyi artırma, -Tedavisi olmayan hastalıklara dair bilgi artırma, -Tedavisi olmayan hastalıklar için geliştirilen tedavilerin uygulamalarına dair bilgi edinme amaçları olması durumunda. İngiltere, embriyonik kök hücre üzerinde araştırmalara, embriyondan kök hücre elde edilmesine ve yalnızca kök hücre elde edilmesi amacıyla embriyo oluşturulmasına izin vermektedir.(100)Mayıs 2004 tarihinde dünyada üzerinde bir ilk teşkil eden Kök Hücre Bankası açılmıştır.(101) 4. TÜRKİYE’DE KÖK HÜCRE ARAŞTIRMALARI TARTIŞMALARI ve KÖK HÜCRE ARAŞTIRMALARINDA HUKUKİ DURUM. Türkiye’deki yasal düzenlemelere göz atmadan önce kök hücre araştırmaları hakkında bilim çevrelerinden yapılan açıklamalara baktığımızda konu hakkında yasal boşluk olduğunun, kamuoyunda yeterli tartışma ortamının olmadığının vurgulandığı görülmektedir.(102) Kök hücre araştırmalarının erişkin kök hücre ve embriyonik kök hücre alanlarında eşgüdümle ilerlemesi gereğine de değinilmektedir.(103) Konunun etik boyutu hakkında yapılan açıklamalara baktığımızda üreme amaçlı klonlamanın yasaklanması gereği dile getirilirken, ana rahmine yerleştirilmeyen embriyonun araştırma amaçlı kullanılmasının genellikle kabul edildiği görülmektedir.(104) Araştırma amaçlı embriyo meydana getirilmemesi gerektiği kanısında olanlar da vardır.(105) Ocak 2005’te kök hücre ile deneme yapmak için, etik kuruldan ilk defa izin alındığı haberi verilmiştir.(106) Ancak ülkemizdeki tartışmalarda kök hücre araştırmalarının etik boyutundan ziyade mali boyutu ön plana çıkartılmaktadır.(107) Konuyu İslam’a uygunluğu açısından ele alan Hayrettin Karaman, rahme yerleştirilmemiş embriyon, kendi haline bırakıldığı takdirde gelişip insan olarak doğmayacağından, embriyonun insan olarak görülemeyeceğini beyan etmiştir.(108) Kök hücre araştırmaları dolayısıyla araştırmalarda kullanılan embriyonun statüsü Türk Hukuk doktrinde bugüne kadar ele alınmamışsa da, hayatın başlangıcı meselesi bağlamında ve tüpte döllenme tedavisi dolayısıyla embriyo hakkında açıklanmış görüşler mevcuttur. Bu görüşlere bakacak olursak, hak sujesi olma anını rahim dışında oluşan embriyonun meydana gelme anına taşınma taraftarları olduğu kadar,(109) hayat hakkının ana rahmine düşme ile başlayacağını savunanlar da vardır.(110) Bununla birlikte henüz ana rahmine düşmemiş çocuk yönünden Türk Medeni Kanunu’nda uygulanabilecek hükümler olduğu bildirilmiştir.(111) Yine doğrudan kök hücre araştırmalarına dair olmamakla birlikte, tüpte döllenme tedavisi dolayısıyla embriyo üzerinde yapılan araştırmalar bağlamında, ceza hukuku açısından embriyonun insanla eş tutulamayacağını, embriyonun spermle eşdeğerde olduğu da iddia edilmektedir.(112) Türk Medeni Kanunu’nun 28. maddesinin 2. fıkrası “çocuk hak ehliyetini, sağ doğmak koşuluyla, ana rahmine düştüğü andan başlayarak elde eder” demek suretiyle hayatın başlangıcı meselesi (embriyonun hukuki statüsü) hakkında çevre şartları teorisi lehine görünmektedir. Bu anlamda embriyonun insan statüsünde görülemeyeceği sonucunu çıkarabilmekteyiz. Türk Hukuk Mevzuatında insan embriyosu hakkında tek düzenleme Üremeye Yardımcı Tedavi Merkezleri Yönetmeliği’dir. Yönetmeliğin 17. maddesi embriyonun kullanım şartlarını belirtip, uyulmaması durumunda idari yaptırım öngörmektedir: ...Kendilerine ÜYTE(113) uygulanacak adaylardan alınan yumurta ve spermler ile elde edilen embriyoların bir başka maksatla veya başka adaylarda, aday olmayanlardan alınanların da adaylarda kullanılması ve uygulanması ve bu Yönetmelikte belirtilenlerin dışında her ne maksatla olursa olsun bulundurulması, kullanılması, nakledilmesi, satılması yasaktır. Bu yasağa ve bu Yönetmelik hükümlerine uymadığı tespit edilenlerin faaliyetleri Bakanlıkça durdurulur. Yönetmelik, embriyonun, üremeye yardımcı tedavi uygulanacak adaylardan alınan yumurta ve spermler ile elde edileceğini söylemektedir. Dolayısıyla üreme hücrelerinden elde edilmeyen embriyo -bu anlamda tedavi amaçlı klonlama sonucu meydana gelen embriyo- Yönetmelik’in düzenlemesi dışında kalmaktadır. Meydana getirilen embriyonun bir başka maksatla kullanılması ise yasaklanmıştır. Ancak ÜYTE amacı dışında embriyo meydana getirilmesine değinilmemiştir. İkinci fıkrada en fazla üç embriyonun ana rahmine yerleştirilebileceği belirtilmiştir. Yardımcı üreme tekniklerinin uygulandığı merkezlerde üçten fazla embriyo transfer edilmemesi esastır. Fazlalık embriyolar eşlerin rızası alınarak beş yıl boyunca dondurularak saklanabilecektir. Süre sonunda embriyonun imha edilmesi gerekmektedir: Adaylardan fazla embriyo alınması durumunda eşlerden her ikisinin rızası alınarak embriyolar dondurulmak suretiyle saklanabilir. Beş yılı geçmemek şartıyla, merkez tarafından tespit edilecek süre içinde her iki eşin rızası alınarak aynı adayda kullanılabilir. Bu süre sonunda veya eşlerden birinin ölümü veya eşlerin birlikte talebi veya boşanmanın hükmen sabit olması halinde, bu süreden önce saklanan embriyolar derhal imha edilir. Yönetmelik üremeye yardımcı tedavi (tüpte döllenme) dolayısıyla elde edilen embriyonun bir başka maksatla kullanımını yasaklamışsa da; yalnızca araştırma amaçlı embriyo meydana getirilmesi mümkündür. Ayrıca embriyonun üreme hücrelerinden elde edileceğini söylediğinden, tedavi edici klonlama da Yürütmenin öngördüğü idari yaptırım bağlamında değerlendirilemez. Hepsinin ötesinde fazlalık embriyoların kök hücre araştırmalarında kullanılması halinde -doğurabileceği sakıncalar gözetildiğinde orantısız kalan- uygulanacak yalnızca bir idari yaptırımdır. Bu sakıncaları dikkate alan Sağlık Bakanlığı, Eylül 2005’te yayımladığı Genelge’de embriyonik kök hücre çalışmalarının, çağdaş bilim ve kamu vicdanı gereklerine göre yapılacak hukuksal düzenlemelere kadar yapılmamasını istemiş, bu hususta Avrupa Birliği mevzuatına uyum sağlanmaya çalışıldığı bildirilmiştir.(114) Ancak yukarıda gösterdiğim gibi AB’nin bu konuda ortak bir politikası yoktur. Türkiye, İnsan Hakları ve Biyotıp Sözleşmesi’nin tarafı olduğundan yapılacak yasal düzenlemenin bu sözleşmenin hükümleriyle uyumlu olması gerekmektedir. İnsan Hakları ve Biyotıp Sözleşmesi’nin 18. maddesinin ikinci fıkrasında araştırma amacıyla embriyo yaratılmasının yasaklandığı hatırlanmalıdır. Sonuç itibariyle, Türk Hukuk mevzuatında insan embriyosu meydana getirilmesi hakkındaki tek metin olan Yönetmelik, fazlalık embriyoların araştırmalarda kullanımına izin vermemesine rağmen; araştırma amaçlı embriyo meydana getirmek, Yönetmeliğe göre mümkündür. Bununla birlikte, Türkiye’nin taraf olduğu -ve insan haklarına dair bir uluslararası sözleşme olduğundan, 1982 Anayasası’nın 90. maddesinin son fıkrası gereği aynı konuyu düzenlemiş bir kanunla farklı hükümler içermesi halinde esas alınması gereken- İnsan Hakları ve Biyotıp Sözleşme’si araştırma amacıyla embriyo meydana getirilmesini yasaklamakta, ancak fazlalık embriyoların kullanımı konusuna değinmemektedir. SONUÇ Kök hücreler birçok amansız hastalığa derman olma gücünde de olsa hâlâ tam olarak kullanılabilir bir tedavi bulunmamıştır. Etik, ahlaki birçok tartışmayı beraberinde taşımakla birlikte, kök hücre araştırmalarının geleceğin en önemli konularından biri olacağını söylemek kahinlik sayılmaz. Ancak konunun etik ve ahlaki boyutları, kadının korunması ihtiyacı, tedavinin ulaşılabilir olması ve klinik aşamada hastanın korunması meseleleri bilim özgürlüğü önünde engel olarak görülmemelidir. Araştırmalar yasal zemin içinde yürütülmelidir. Bu nedenle yasal boşluğun bir an evvel doldurulması gerekmektedir. Yapılacak yasanın, kök hücre araştırmalarını kapsayıcı olarak düzenlemesi, tedavi edici klonlama, fazlalık embriyonların kullanımı ve araştırma amaçlı embriyo meydana getirmek gibi birbirinden farklı konulara özellikle değinmesi, kafalardaki karışıklığı giderebilir. Bununla birlikte araştırmalara izin vermek için birden çok disiplinin içinde bulunduğu kurullar oluşturulması, konunun bütün boyutlarıyla tartışılması gibi hassasiyet arz eden noktaların gözetilmesi zorunludur. Ayrıca hazırlanacak yasanın, Türkiye’nin imzalayıp onayladığı İnsan Hakları ve Biyotıp Sözleşmesi ile imzalamakla birlikte halen onaylamadığı bu sözleşmenin Ek Protokolü ile uyumlu olması gerekmektedir . Bilimsel gelişmelerin önü alınmak yerine, yaratacağı sonuçlar hesaplanarak yasal koşullar bağlamında denetime ve izlemeye ağırlık verilmesi kök hücre araştırmalarının kötüye kullanılma ihtimalini azaltabilir. Kadının araştırmalarda istismarının önlenmesi yönünde özel tedbir alınması, embriyoyu meydana getiren üreme hücrelerinin vericilerinin rızaları alınırken konunun ahlaki ve etik boyutunun anlatılması, klinik aşamada tedavi denemelerine katılan hastaların aydınlatılmış rızası alınırken özellikle dikkat edilmesi ve bu tedavilerde risk yarar değerlendirilmesinde tümör riski gibi ölüm tehlikelerinin varlığı durumunda denemeye teşebbüs edilmemesi, üreme amaçlı klonlamanın yasaklanması konularını içerecek yasal düzenleme kök hücre araştırmalarının kötüye kullanılmasını önlemek yolunda temel dayanak olacaktır. Embriyonik kök hücre araştırmalarında, araştırmada kullanılan embriyonun elde edilme yöntemine göre farklı ahlaki ve etik değerlendirmeler yapılması, embriyonun ahlaki ve hukuki statüsünün net olarak ortaya konamaması kanaatimizce bilimsel verilerden çok kişilerin ahlaki ve dini görüşlerinin farklılıklarından kaynaklanmaktadır. Embriyo insan statüsünde olmamakla birlikte tamamen de bir nesne olarak görülmemelidir. Bu nedenle yapılacak araştırmalarda kullanılan embriyoların elde edilme yöntemlerinin her şeyden önce insan hayatını ve insan onurunu korumak maksadıyla embriyoyu meta ve nesne olmaktan çıkaracak şekilde yasal zemin içine sokulması ve denetim altına alınması gerekmektedir. Küreselleşmenin etkileri birçok alanda olduğu gibi bilimsel araştırmalarda da yüzünü göstermektedir. Ulusal mevzuatlar bağlamında yapılacak düzenlemelerle bilimsel yöntemlerin uygulanmasına getirilecek kısıtlamalar, bir başka devletin sınırları içinde yasal kabul edilip uygulanabilecektir. Birleşmiş Milletler çatısı altında hazırlanıp kabul edilecek bir sözleşmenin etkisi bu anlamda belirleyici olacaktır. Sonuç olarak, devletler arasında kabul gören noktaların yasal olarak bağlayıcı bir metinle kaleme alınması hiç olmazsa uzlaşılan üreme amaçlı klonlamanın yasaklanmasını sağlayacaktır. * Mehmet Zaman Saçlıoğlu’nun Beş Ada adlı öykü kitabında bulunan “İkinci Masal” adlı öyküde genetik araştırmalar nedeniyle yapılan bir tartışmada söz alan bir bilim adamının düşünceleri. (1)Hürriyet, “Sizce ‘canlı’ ne demek,” 08.03.2002 . ve Türk halkı genetiğe nasıl bakıyor 19.04.2003. Radikal, Deniz Zeyrek 'Kök'te yasak kalıcı değil,” 14.10.2005. (2)Şensel Ferda; “Yeni Ufuklara,Kök Hücreler,” Bilim ve Teknik , no: 411, Ek, 2002 . (3)Beksaç Meral et al; Kök Hücre Araştırmalarında Güncel Kavramlar, Ankara, Türkiye Bilimler Akademisi, 2004, s.15-16. (4)McLaren, Anne ve Hermerén, Göran; Ethıcal Aspects Of Human Stem Cell Research And Use, The European Group On Ethics In Science And New Technologies To The European Commission, 2000, s. 2. (5) Beksaç, Kök Hücre, s. 9 . (6)Kansu, Emin; “Kök Hücreleri ve Klonlama,” Avrasya Dosyası, Uluslararası İlişkiler ve Stratejik Araştırma Dergisi,C:VIII,no:3 (sonbahar 2002) s 42 . (7)Beksaç, Kök Hücre, s,10. (8)Ibid, s.10. (9)Kansu, Kök hücreleri, s.42. (10)Beksaç, Kök Hücre, s. 12. (11)TUBA tarafından kullanıldığı şeklinde somatik hücre transferi yöntemi demeyi tercih ediyorum. Çekirdek nakli şeklinde de kullanılmıştır. Bkz. Kansu, Emin; Kök Hücreleri ve Klonlama, Avrasya Dosyası cilt 8 sayı:3, sonbahar 2002, sayfa 41-47 (12)Şensel, Yeni Ufuklara, Kök Hücreler, s.7 (13)McLaren ve Hermerén, Human Stem Cell Research, s.7. (14)Tuba tarafından hazırlanan raporda fetüsten elde edilen kök hücreler emriyonik kök hücre başlığı altında değerlendirilmişse de farklı ayrımlar da vardır. Bkz.Anne McLaren ve Göran Hermerén, Ethical Aspects Of Human Stem Cell Research And Use, The European Group On Ethics In Science And New Technologies To The European Commission,2000, s. 4. (15)Weiss, Rick; “Toplumdaki Bölünme:Kök Hücre,” National Geographic Türkiye,(Temmuz 2005),s.80 ve 89. (16)Dresser, Rebecca; “Stem Cell Research: the bigger picture”, 0-muse.jhu.edu.library.bilgi.edu.tr/jour...v048/48.2dresser.pdf, 12.12.2005, s. 9-10. (17) Dresser, ”Stem Cell Research” say 2. (18)Guenin, Louis M.; “ESSAYS ON SCIENCE AND SOCIETY: Morals and Primordials” www.sciencemag.org/cgi/content/full/292/5522/1659, 03.12.2005 . (19)Farley, Margaret; A, “Roman Catholic Views on Research Involving Human Embryonic Stem Cells,” ETHICAL ISSUES IN HUMAN STEM CELL RESEARCH VOLUME III Religious Perspectives, Rockville, Maryland, 2000, National Bioethics Advisory Commission, s.16-20. (20)İbid.18. (21)Rosenau, Henning; Yeniden Canlı Üretimi, Tedavi Edici Klonlama Tartışmaları ve Alman Kök Hücre Kanunu, Tıp ve Ceza Hukuku, Hazırlayan Yener Ünver, çev. Hakan Hakeri, 2004, Ankara, s.54-58. (22)ibid. s.54 . (23)Wolfgang WODARG; Human stem cell research, Report of the Committee on Culture, Science and Education, Council of Europe Doc. 9902, 11 September 2003, para 40 . (24)Rosenau, s.64. (25)Wolfgang, WODARG; Human stem cell research, para 44. (26)Rosenau, s.55. (27)ibid. s.56. (28)Wolfgang, WODARG; Human stem cell research para 44. (29)Dresser,”Stem Cell Research”say5,6 (30)The European Group On Ethics İn Science And New Technologies At The European Commission;Opinion :Ethical Aspects Of Human Stem Cell Research And Use,” 2000, s.12. (31) Rosenau, s.59. (32)ibid. s.59. (33)Tabii burada çarpışan menfaatlerin aynı olmadığı; kadının bedeni üzerindeki tasarruf hakkı bulunduğu göz ardı edilmemelidir. (34)İbid. s.58 (35)İbid. s.58 (36)ibid. s.60-64 (37)İbid. s.61. (38)İbid. , s.56. (39)Guenin, ESSAYS ON SCIENCE AND SOCIETY . (40)ibid. (41)Rosenau , s.63. (42)Pattinson, Shaun and Caulfield, Timothy;”Variations and voids:regulation of human cloning around the world,”BMC Medical Ethics 13/11/2004, 2004, 5:4 –www.biomedcentral.com/1472-6939/5/9, 01.12.2005 Ayrıca bkz. dn. 70 ve World Health Organization, Reproductive cloning of human beings: status of the debate in the United Nations General Assembly, Report, EB115/INF.DOC./2115th Session, 16 December 2004. (43) World Health Organization, A dozen question on human cloning, www.who.int/ethics/topics/cloning/en/index.html , 10.12.2005 , para. 7 . (44)Costa Rica: draft resolution,International convention against the reproductive cloning of human beings. A/58/73. , daccessdds.un.org/doc/UNDOC/GEN/N03/330/...3084.pdf?OpenElement 10.12.2005 (45) Dresser, “Stem Cell Research”, s.9. (46)Wolfgang, WODARG; Human stem cell research, para 54-63. (47)Tıp Dünyasında Hayat Kurtaracak Devrim, Vatan Gazetesi, 21 Mayıs 2005 . Ayrıca son gelişmeler, araştırmanın tamamen etiğe aykırı yapıldığını, araştırmayı yapan ekibin başkanı ve çalışanlarının itirafıyla açığa çıkmıştır. bkz. dn. 56. (48)The European Group On Ethics İn Science And New Technologies At The European Commission, Opinion :Ethical Aspects Of Human Stem Cell Research And Use,” 2000 (49)Weiss, Rick;“Toplumdaki Bölünme:Kök Hücre,” National Geographic Türkiye, (Temmuz 2005), s.77 ve 79. (50)Dresser, “Stem Cell Research” s.10,11. (51)İbid. s.12. (52)Swenson, Jean; “Embryonic stem cells help patents, not patients,” Twinities, www.twincities.com/mld/twincities/news/editorial/13535335.htm , 01.12.2005 . (53)ibid. (54)ibid. (55)BBCTurkish.com; Kök Hücre Öncüsünden İstifa, www.bbc.co.uk/turkish/news/story/2005/11...ell.shtml,10.12.2005. Ancak araştırmaya katılan bilim adamlarının verici olması tıbbi etik kurallarına aykırıdır. Ayrıca bkz. 50. numaralı dn. (56)Dresser,”Stem Cell Research”s.5-6. (57)İbid.s.6. (58)Lo, Bernard et al; “A New Era in the Ethics of Human Embryonic Stem Cell Research,” Stem Cells, stemcells.alphamedpress.org/cgi/content/full/23/10/1454, 10.12.2005 . (59)İbid. (60)İbid. Araştırmada kullanılan embriyonun taşıdığı genetik bozukluklar nedeniyle embriyonu oluşturan sperm ve yumurta üreme hücreleri vericileriyle yeniden temasa geçme ihtimali göz önünde tutulmaktadır. (61)İbid. (62)İbid. (63)İbid. (64)İbid. Yukarda bahsedilen embriyonun tahrip edilmesi ve embriyonun statüsü hususundaki tartışma kişiye anlatılmalıdır. (65)The European Group On Ethics İn Science And New Technologies At The European Commission; Opinion :Ethical Aspects Of Human Stem Cell Research A

http://www.biyologlar.com/kok-hucre-calismalari-ve-etik

Klonlama Teknolojisinin Gelişimi

Bu teknolojinin gelişim aşamalarını şöyle özetleyebiliriz; 1.Transgenik Teknolojisi Bu teknoloji ile insandan koyuna, domuza, sığıra ve keçiye gen aktarımı yapılmakta, sütlerinde insan proteini üretilmesi yanısıra organ, doku ve kan üretme imkanı da bulunmaktadır. Bu protein ile emphysema ve cystic fibrosis gibi hastalıklar tedavi edilebilmektedir. 2.Çekirdek Transfer Teknolojisi Bu teknoloji bir hücredeki bütün genomu yani somatik kromozomların bir hücreden diğerine naklini ifade eder.Çekirdek, döllenmiş yumurta hücresinden alınmakta ve çekirdeği alınmış fakat döllenmemiş yumurta hücresine yerleştirilmektedir. Bu sistemle uygulanan böyle bir teknik klonlama olarak değerlendirilmemektedir. Zira bir duplikasyon işlemi bulunmamaktadır. Ancak burada sitoplazmada bulunan mitokondri DNA’ları farklıdır. 3.Çekirdek Teknolojisini Kullanarak Yapılan Klonlama İki şekilde yapılmaktadır; a)Embriyo Klonlama: Alınan örnek, döllenmiş bir embriyodan alınıp yine aynı annenin yumurtasında çekirdek transferi yapılırsa bu durumda mitokondri DNA’ları aynı olacaktır. Bu teknoloji benzer ikizlerin oluşturulmasında kullanılmakta ve embriyo klonlama olarak bilinmektedir. Sığır, kurbağa ve farede de başarılı şekilde denenmiştir. İnsanlarda da bu tip klonlama yapılmış ancak bu ikizler yaşatılamamıştır. Bununla beraber basında klonlama olarak isimlendirilmesine rağmen bu uygulamada farklı çekirdekler kullanıldığı için bunlar gerçek klonlar değillerdir. b)Normal Canlı Klonlama (Somatik Nüklear Transfer): Dolly doğuncaya kadar, normal bir canlıyı klonlamak mümkün değildi. Organizma döllenmiş bir yumurtadan meydana gelmekte ve her bir hücre döllenme sonucunda oluşan tüm bir genomu içermektedir. Her bir hücre birbirinin tamamen aynısıdır. Ancak, büyüme ve gelişme olayları hücrelerde farklılaşma meydana getirmekte ve beyin dokusu, kalp dokusu, deri, kemik vs oluşmaktadır. Bazı genler somatik hücrelerde bu şekilde özel görevlere ayrıldığı zaman çalışmasını durdurmakta ve sadece ilgili deri, kemik gibi genleri çalışmaktadır. Embriyonik klonlamada farklılaşmaya başlamamış döllenmiş yumurta hücresinin çekirdeği (genom) kullanılmaktadır. Dolly’nin oluşumunda ise somatik bir dokudan alınan hücreyle bu işlem başarılmıştır. Bu transfer sonunda, somatik dokudaki çalışmayan genler tekrar çalışmaya başlamış ve genlerin çalışması organların oluşmasıyla durmuştur. Genlerin gerektiği zamanda çalışması veya çalışmasını durdurması klonlamanın esasını oluşturmaktadır. Bu uygulamada döllenmemiş yumurtanın çekirdeği çıkarılarak, somatik hücre çekirdeği bu yumurtanın içine yerleştirilmiştir. Oluşan zigot, herhangi bir koyuna nakledilerek gelişmeye bırakılmıştır. Bu uygulamanın embriyonik klonlamadan farkı, mitokondriyal DNA’nın farklı olmasından kaynaklanmaktadır. Burada ilginç olan diğer nokta, Dolly bir babaya sahip değildir, fakat 3 anneye sahip olabilir. Mesela, annesi; -Genomu kullanılan bir dişi olabilir -Yumurta hücresini veren dişi olabilir -Gameti taşıyan bir dişi olabilir 4.Genetik İkizlik İkizlik kavramı iki veya daha fazla benzer kardeşlerin oluşması anlamındadır. İkizlik, seksüel bir üretim sonucudur. Hücredeki bütün DNA iki farklı ferdin DNA’larının yarısını taşımaktadır. Döllenmiş yumurta iki ya da daha fazla parçaya tekrar bölünecek ve aynı cinsiyette fertler meydana getirecektir. Bu olayın çekirdek transferi ile ilgisi yoktur. Klonlama ise aseksüel bir üretimle ilgilidir. Klonlamada mitokondri DNA’ları farklı olabilir ancak ikizlikte hepsi aynı olmak zorundadır. 5.Klonlamayla IVF (In Vitro Fertilizasyon) Arasındaki Farkı IVF, yumurta hücresinin (şansı artırmak için birkaç tanesi) sperm tarafından tüpte döllendirilmesi ve daha sonra rahime implante edilmesi olayıdır. Klonlamada ise yumurta hücresinin çekirdeği tüpte çıkarılıyor ve klonlanacak canlının çekirdeği bu hücreye veriliyor. Dolayısıyla, yumurta hücresi artık büyüyeceğini sağlayan çekirdeğe sahip oluyor. Bundan sonra bu yeni hücre rahime implante ediliyor ve normal embriyolar gibi büyümeye devam ediyor. Klon embriyolar, normal ve IVF (in vitro fertilizasyon) embriyoları birbirlerine çok fazla benzemezler. Roslin Enstitüsü’ndeki araştırmacılar, klon embriyolarının normal embriyolardan daha büyük olduğunu ve hamileliklerin başarısızlığının ve fetüs ölümüyle sonuçlanmasının daha çok rastlandığını veya sezeryan ameliyatlara ihtiyaç duyulduğunu saptamışlar. DoçDr.Eyyüp Rencüzoğulları Kaynaklar Başaran, N. 1996, Tıbbi Genetik, 6.baskı, Bilim Teknik Yayınevi, İstanbul. Klug, W., Cummings M.R. 2002. Genetik Kavramlar, 6.baskı, Çeviri Ed. Öner, C., Palme Yayıncılık, Ankara. Temizkan, G. 1999, Genetik II.Moleküler Genetik, İ.Ü.Fen Fakültesi Basımevi, İstanbul, encarta.msn.com/text www.personal.psu.edu/users www.omu.edu.tr www.turkiye.net gslc.genetics.utah.edu/units/cloning/whatiscloning/ www.tubitak.gov.tr

http://www.biyologlar.com/klonlama-teknolojisinin-gelisimi-1

Epidermisin Kökeni ve Yaşam Süresi

Epidermis gelişen embriyodan periklinal bölünmelerle oluşan protodermden (önderi) ya daapikal meristemin dermatogen gibi yüzeysel tabakasından gelişir. Tunika ve korpus farkl ılaşması belirgin olduğunda epidermis tunikamn en dış tabakasından antiklinal bö­lünmelerle gelişir. Sekonder büyüme göstermeyen organlar çoğunlukla yaşamları süresince epidermislerini korurlar. Ancak bazı gimnospermlerde, dikotil gövde ve köklerinde ve bazı odunlu monokotillerde görülen “periderm” denilen sekonder bir örtü gelişince epi­dermis parçalanır. Böylece epidermisin yaşam süresi periderm oluşması ile yakından il­gilidir. Sonradan oluşan sekonder büyümeden de görüldüğü gibi olgun epidermis meriste- matik etkinlik bakımından pasif olmasına karşın uzun süre bölünme potansiyelini korur. Epidermiste doku farklılaşması sırasında meristematik özellik kazanan hücreler (meristemoidler) etraflarında bulunan hücrelerin meristematik etkinlik kazanmalarım önlerler. Söylece meristematik özellik kazanan bir epidermis hücresi örneğin stomayı oluştururken aynı anda yanında bulunan epidermis hücresinde de stoma gelişimine izin vermez.

http://www.biyologlar.com/epidermisin-kokeni-ve-yasam-suresi

Kök Hücre Ve Telomeraz

Bundan farklı olarak, kök hücrelerin bu şekilde belirlenmiş bir görevleri yoktur. Aldıkları sinyale göre farklı hücre türlerine dönüşüyorlar. Bunu kontrol eden unsurlarsa genlerdir. Bir kök hücresinin hangi hücreye dönüşeceğini hücre çekirdeğindeki genler belirlemektedir. Diğer hücreler ölünce veya hasar görünce, kök hücreler hangi hücre türüne ihtiyaç varsa o hücreye dönüşüyorlar. Bu işlem sırasında bazı genler daha aktif hale gelirken, bazıları da baskılanmaktadır. Kendisini yenileme gücüne sahip olan kök hücreler, bir bakıma diğer hücre türleri için tükenmez bir kaynak görevi üstlenmektedirler. İlk olarak 1998 yılında insan embriyosundan kök hücre elde edilip kültürlerde çoğaltılmasından sonra kök hücre araştırmaları hız kazandı. Değişik hücre türlerine dönüşebilme potansiyeli olan kök hücreleri, kontrol edilebildikleri taktirde laboratuvar ortamında istenilen hücre türüne dönüştürülebiliyorlar. Böylece vücutta eskiyen, hastalanan veya ölen hücrelerin veya organların yerini doldurmak üzere laboratuvarda kök hücrelerinden yeni hücreler, hatta yeni bir organ elde edilebilir. Ancak bunu başarabilmek için hücrenin genetik şifresini ve kontrol mekanizmalarını çok iyi bilmek gerekiyor. Kök Hücre nedir? Erkeğin spermi ile kadının yumurtası birleştiğinde, yani döllenme sonrası oluşan hücre (zigot) tek başına tüm organizmayı meydana getirebilecek genetik bilgiye ve güce sahiptir. Vücuttaki tüm hücrelere dönüşebilecek potansiyele sahip olan bu ilk embriyonel hücreye "totipotent" herşeyi yapabilen anlamında hücre denilmektedir. Döllenmeyi izleyen ilk dört ile beş gün içerisinde tek hücreden meydana gelen tüm hücreler aynı güce sahiptir, yani döllenme sonrası ilk dört gün içerisinde oluşan hücreler rahim içerisine yerleştirildiğinde her biri tek başına bir organizma, yani insan oluşturabilecek güçtedirler. Anne karnında ilk dört gün içerisinde eğer herhangi bir nedenle bu hücreler birbirinden ayrılırsa, ayrılan her hücre kendi başına büyüyebilir ve ayrı bir insan meydana gelebilir. Genetik şifreleri aynı olan bu kişiler “tek yumurta ikiz” leridir. Beşinci günden, yani 2-3 hücre bölünmesinden sonra meydana gelen hücreler "blastosit" denilen küresel bir şekil alırlar. Bu kürenin içerisindeki hücreler vücuttaki tüm hücrelere dönüşebilecek potansiyele sahipler; ancak tek başlarına tüm organizmayı oluşturamamaktadırlar. Yani, döllenmeden 6-7 gün sonra meydana gelen hücrelerden herhangi biri alınıp rahime yerleştirilirse bu hücre artık bir insan oluşturamıyor. Beşinci günden sonra oluşan hücreler her hücre türüne dönüşebilecek güce sahipler. Gerekli ortam sağlandığında bu hücreler bilinen yaklaşık 200 hücre türüne dönüşebiliyorlar. Ancak bu hücreler artık tek başına tüm organizmayı oluşturamıyorlar. Bu nedenle bu hücrelere "pluripotent" hücre deniliyor. Hayvanlardan ilk olarak 1981 yılında elde edilen bu tür kök hücreler yaklaşık 15 yıl sonra insanlardan da elde edildi. Hücrelerin bölünme kapasitesini, yani bir bakıma ömrünü belirleyen faktörlerden biri, kromozomların ucunda bulunan ve "telomer" denilen DNA zincirleridir. Bu zincirlerin uzun kalmasını sağlayan ise telomeraz enzimidir. Bir hücrede telomeraz ne kadar aktifse telomer uzunluğu da o kadar korunabiliyor demektir. Telomerler ne kadar uzun olursa hücrelerin bölünme kapasitesi de o kadar fazla olur. Kök hücrelerde de çok aktif telomeraz faaliyeti ve buna bağlı uzun telomer zinciri vardır. Bu nedenle kök hücreler çok uzun sürelerle bölünerek kendilerini kopyalayabiliyorlar. Anne karnındaki organizmanın daha sonraki gelişim aşamalarında hücreler biraz daha özel görevlere sahip oluyor ve erişkin kök hücrelerine dönüşüyorlar. Bu erişkin kök hücreleri de belirli hücre türlerini meydana getiriyor. Örneğin kan kök hücresi kemik iliğinde bulunuyor ve gerektiğinde beyaz kan hücreleri, kırmızı kan hücreleri ve kanın pıhtılaşmasında görev alan trombositlere dönüşüyor. Aynı şekilde deri kök hücreleri de değişik deri hücrelerine dönüşebiliyorlar. Biraz daha özelleşmiş olan bu kök hücrelere "multipotent" (çok yetili) hücre deniliyor. Tüm organizmayı oluşturma gücüne sahip olan veya tüm hücre türlerine dönüşebilen kök hücreler, insan gelişiminin ilk aşamalarında, yani embriyo aşamasında bulunuyor. Ancak biraz daha özelleşmiş kök hücreleri çocuklarda ve hatta erişkinlerde bulunabiliyor. Buna en iyi örnek kemik iliğindeki kan kök hücreleri. Bu hücreler hem çocuk hem de erişkin kemik iliğinde bulunuyorlar. İnsan vücudunda ancak belirli birkaç hücre türüne dönüşebilen erişkin kök hücreleri, laboratuvar koşullarında gerekli ortam ve sinyaller sağlandığında çok daha fazla hücre türüne dönüşebilmektedirler. Örneğin, normal koşullarda sadece kan hücrelerine dönüşen kan kök hücreleri, istenildiğinde sinir hücresine dönüşebiliyorlar. Kök Hücrelerin Kaynağı: Kök hücreler üç kaynaktan elde ediliyor. Bunlardan ilki insan veya hayvan embriyosu. Yani daha anne karnında 5-6 hücre aşamasındaki organizmadan kök hücre elde edilebiliyor. Buna embriyonel kök hücre deniliyor. İnsan embriyonel kök hücresi ilk olarak 1994 yılında elde edildi, 1998 yılındaysa laboratuvarlarda üretilmeye başlandı. Anne karnında büyüyerek fetus haline gelen organizmanın ileride sperm veya yumurta olacak üreme hücreleri de kök hücre kaynağı olarak kullanılabiliyor. Kök hücrelerin diğer bir kaynağıysa erişkinlerde bulunan ve birkaç hücre türüne dönüşebilen "erişkin kök hücre" leridir. Hücrelerin duvarındaki belirli işaretleri tespit ederek, yani bir bakıma bar kodunu okuyarak hangi hücrenin kök hücre, hangisinin farklılaşmış hücre olduğunu anlamak mümkündür. Erişkin kök hücrelere en iyi örnek, her insanda kemik iliğinde bulunan kan kök hücreleridir. Deneysel çalışmalarda her iki kaynaktan elde edilen kök hücreler kullanılmaktadır. Hangi kaynaktan alınırsa alınsın elde edilen kök hücrelerin laboratuvarda çoğaltılmasıyla yeni kök hücre elde edilmesi veya farklı hücre elde edilmesi mümkündür,. ancak embriyodan elde edilen kök hücreler ahlaki açıdan oldukça tartışmalıdır. Bu hücreleri elde etmek için embriyonun hayatına son vermek gerekiyor ve bu da özellikle toplumun tutucu kesiminin tepkisine yol açmaktadır. Telomerler ve Telomeraz: Telomerler, ökaryotik kromozomların uçlarında yer alan ve çok sayıda "TTAGGG" dizi tekrarı içeren heterokromatik yapılar olup kromozom stabilitesinde, gen ekspresyonunda, kromozomal replikasyonda, tümör oluşumunda, yaşlanmada ve hücre bölünmesinde rol aldıkları bilinmektedir. Ökaryotik hücrelerdeki DNA replikasyonunda, kalıp DNA'nın 3' ucunun normal replikasyon mekanizmasıyla kopyalanamamasına "replikasyon sonu problemi" denmektedir ve bunu kompanse edecek moleküler mekanizmaların yokluğunda, her hücre bölünmesinde kromozomal DNA'nın 3' ucunda, yaklaşık 50-200 nükleotidlik kayıp olmakta ve sonuçta "hücresel yaşlanma" gelişmektedir. Telomeraz (telomer terminal transferaz), kromozomal uçlardaki "TTAGGG" tekrarlarının sentezinden sorumlu olan ribonükleoprotein yapıda özel bir DNA polimerazdır. Embriyonik hücreler ve erişkin kök hücrelerinde aktif olan bu enzim, normal somatik hücrelerde saptanmamakta, immortal kanser hücrelerinde ise yeniden aktive olmaktadır. İnsan telomeraz enziminin bilinen 3 komponenti mevcuttur: 1) İnsan telomerazı RNA komponenti (hTR) 2) İnsan telomerazı reverse transkriptazı (hTERT) 3) İnsan telomerazı protein komponenti (TP 1) "hTR"nin, telomer DNA'sına komplementer olan ve 5'-CCCUAAA-3' tekrarlarını içeren 8-30 bazlık bir bölümü sentezde kalıp olarak kullanılmaktadır. Telomerazın katalitik altbirimi olan "hTERT" ise bu diziye komplementer olan "GGTTAG" dizi tekrarlarını sentezlemekte ve "G"den zengin olan 3' ucuna eklemektedir. RNA kalıbının, yeni sentezlenen telomerik dizinin 3'ucuna doğru kaymasıyla, DNA polimeraz bu diziyi kalıp olarak kullanarak karşı komplementer zinciri tamamlar. Telomerazın RNA altbirimine bağlanan "TP1"in, enzimatik aktivitenin regülasyonunda rolü olabileceğini ileri sürmektedir. Mesut Darendeli KYANAK: www.makaleler.com

http://www.biyologlar.com/kok-hucre-ve-telomeraz-1

MERİSTEMATİK (BÖLÜNÜR) DOKULAR

Meristem doku bölünme yeteneği bulunan, ince çeperli, bol plazmalı, çekirdeği hücre hacmine göre büyük, plastidleri proplastid halinde, hücreleri arasında boşluk bulunmayan hücrelerden oluşmuştur. Genel olarak hücrelerinin eni boyuna eşit (izodiyametrik), farklılaşmamış küçük hücrelerdir. Kofulları küçük veya hiç yoktur. Bu dokunun hücrelerinin bir bölümü zamanla farklılaşarak yetkin (sürekli) dokuları oluşturur. Meristemler bitkide bulundukları yere, kökenlerine, meydana getirdikleri dokuların yapısına, gelişme safhaları ve fonksiyonlarına göre bölümlere ayrılabilirler. Meristemler bitkide bulundukları yere göre üçe ayrılırlar. 1. Apikal (Uç) Meristem: Kök, gövde ve bunların yan organlarının uçlarında bulunurlar. Bitkide boyca uzamayı sağlarlar. 2.Lateral (Yanal) Meristem: Çevreye paralel (periklinal) bölünmelerle organların enine büyümelerini sağlarlar. Özellikle çap yapan bitkilerde kambiyum dokusu şeklinde organize olur. Vasküler kambiyum ve fellogen örnek verilebilir. 3.İnterkalar (Ara) Meristem: Apikal meristemden kopmuş ve sürekli dokular arasında kalmış meristemlerdir. Örneğin buğdaygillerin (Gramineae) yaprak ve internodyumlannın tabanında bulunan meristemler gibi. Bu meristem de bitkide boyca uzamaya katkıda bulunur. Meristemler kökenlerine göre 2’ye ayrılır. A.Primer Meristem: Embriyodan itibaren bölünme yeteneğini sürdüren meristemlerdir. Apikal, interkalar ve lateral meristemler aynı zamanda primer meristemlerdir. B.Sekonder Meristem: Canlı sürekli doku hücrelerinin zamanla meristematik yetenek kazanmasıyla oluşur. Peridermanın oluşumunu sağlayan fellojen (mantar kambiyumu) ve yine yaraların kapanmasını sağlayan yara kambiyumu (fellojen) böyle meristemdir.

http://www.biyologlar.com/meristematik-bolunur-dokular

Klonlama Teknolojisinin Gelişimi

Bu teknolojinin gelişim aşamalarını şöyle özetleyebiliriz; 1.Transgenik Teknolojisi Bu teknoloji ile insandan koyuna, domuza, sığıra ve keçiye gen aktarımı yapılmakta, sütlerinde insan proteini üretilmesi yanısıra organ, doku ve kan üretme imkanı da bulunmaktadır. Bu protein ile emphysema ve cystic fibrosis gibi hastalıklar tedavi edilebilmektedir. 2.Çekirdek Transfer Teknolojisi Bu teknoloji bir hücredeki bütün genomu yani somatik kromozomların bir hücreden diğerine naklini ifade eder. Çekirdek, döllenmiş yumurta hücresinden alınmakta ve çekirdeği alınmış fakat döllenmemiş yumurta hücresine yerleştirilmektedir. Bu sistemle uygulanan böyle bir teknik klonlama olarak değerlendirilmemektedir. Zira bir duplikasyon işlemi bulunmamaktadır. Ancak burada sitoplazmada bulunan mitokondri DNA’ları farklıdır. 3.Çekirdek Teknolojisini Kullanarak Yapılan Klonlama İki şekilde yapılmaktadır; a)Embriyo Klonlama: Alınan örnek, döllenmiş bir embriyodan alınıp yine aynı annenin yumurtasında çekirdek transferi yapılırsa bu durumda mitokondri DNA’ları aynı olacaktır. Bu teknoloji benzer ikizlerin oluşturulmasında kullanılmakta ve embriyo klonlama olarak bilinmektedir. Sığır, kurbağa ve farede de başarılı şekilde denenmiştir. İnsanlarda da bu tip klonlama yapılmış ancak bu ikizler yaşatılamamıştır. Bununla beraber basında klonlama olarak isimlendirilmesine rağmen bu uygulamada farklı çekirdekler kullanıldığı için bunlar gerçek klonlar değillerdir. b)Normal Canlı Klonlama (Somatik Nüklear Transfer): Dolly doğuncaya kadar, normal bir canlıyı klonlamak mümkün değildi. Organizma döllenmiş bir yumurtadan meydana gelmekte ve her bir hücre döllenme sonucunda oluşan tüm bir genomu içermektedir. Her bir hücre birbirinin tamamen aynısıdır. Ancak, büyüme ve gelişme olayları hücrelerde farklılaşma meydana getirmekte ve beyin dokusu, kalp dokusu, deri, kemik vs oluşmaktadır. Bazı genler somatik hücrelerde bu şekilde özel görevlere ayrıldığı zaman çalışmasını durdurmakta ve sadece ilgili deri, kemik gibi genleri çalışmaktadır. Embriyonik klonlamada farklılaşmaya başlamamış döllenmiş yumurta hücresinin çekirdeği (genom) kullanılmaktadır. Dolly’nin oluşumunda ise somatik bir dokudan alınan hücreyle bu işlem başarılmıştır. Bu transfer sonunda, somatik dokudaki çalışmayan genler tekrar çalışmaya başlamış ve genlerin çalışması organların oluşmasıyla durmuştur. Genlerin gerektiği zamanda çalışması veya çalışmasını durdurması klonlamanın esasını oluşturmaktadır. Bu uygulamada döllenmemiş yumurtanın çekirdeği çıkarılarak, somatik hücre çekirdeği bu yumurtanın içine yerleştirilmiştir. Oluşan zigot, herhangi bir koyuna nakledilerek gelişmeye bırakılmıştır. Bu uygulamanın embriyonik klonlamadan farkı, mitokondriyal DNA’nın farklı olmasından kaynaklanmaktadır. Burada ilginç olan diğer nokta, Dolly bir babaya sahip değildir, fakat 3 anneye sahip olabilir. Mesela, annesi; Kaynakwh webhatti.com: -Genomu kullanılan bir dişi olabilir -Yumurta hücresini veren dişi olabilir -Gameti taşıyan bir dişi olabilir 4.Genetik İkizlik İkizlik kavramı iki veya daha fazla benzer kardeşlerin oluşması anlamındadır. İkizlik, seksüel bir üretim sonucudur. Hücredeki bütün DNA iki farklı ferdin DNA’larının yarısını taşımaktadır. Döllenmiş yumurta iki ya da daha fazla parçaya tekrar bölünecek ve aynı cinsiyette fertler meydana getirecektir. Bu olayın çekirdek transferi ile ilgisi yoktur. Klonlama ise aseksüel bir üretimle ilgilidir. Klonlamada mitokondri DNA’ları farklı olabilir ancak ikizlikte hepsi aynı olmak zorundadır. 5.Klonlamayla IVF (In Vitro Fertilizasyon) Arasındaki Farkı IVF, yumurta hücresinin (şansı artırmak için birkaç tanesi) sperm tarafından tüpte döllendirilmesi ve daha sonra rahime implante edilmesi olayıdır. Klonlamada ise yumurta hücresinin çekirdeği tüpte çıkarılıyor ve klonlanacak canlının çekirdeği bu hücreye veriliyor. Dolayısıyla, yumurta hücresi artık büyüyeceğini sağlayan çekirdeğe sahip oluyor. Bundan sonra bu yeni hücre rahime implante ediliyor ve normal embriyolar gibi büyümeye devam ediyor. Klon embriyolar, normal ve IVF (in vitro fertilizasyon) embriyoları birbirlerine çok fazla benzemezler. Roslin Enstitüsü’ndeki araştırmacılar, klon embriyolarının normal embriyolardan daha büyük olduğunu ve hamileliklerin başarısızlığının ve fetüs ölümüyle sonuçlanmasının daha çok rastlandığını veya sezeryan ameliyatlara ihtiyaç duyulduğunu saptamışlar. DoçDr.Eyyüp Rencüzoğulları Kaynaklar Başaran, N. 1996, Tıbbi Genetik, 6.baskı, Bilim Teknik Yayınevi, İstanbul. Klug, W., Cummings M.R. 2002. Genetik Kavramlar, 6.baskı, Çeviri Ed. Öner, C., Palme Yayıncılık, Ankara. Temizkan, G. 1999, Genetik II.Moleküler Genetik, İ.Ü.Fen Fakültesi Basımevi, İstanbul,

http://www.biyologlar.com/klonlama-teknolojisinin-gelisimi-2

Genetik Hastalıklar Hakkında Sık Sorulan Sorular

1. Genetik Hastalıkların tekrarı önlenebilir mi? Evet, önlenebilir. Konusunda uzman genetik danışmanlar tarafından verilecek genetik danışma hizmeti önem taşımaktadır. Genetik teknolojilerdeki ilerlemelerin sağladığı olanaklarla ailenin sağlıklı bir bebeğe sahip olma olasılığı artırılabilmektedir. 2. Akraba evliliklerinde hasta çocuk sahibi olma riski artar mı? Akraba evliliği; resesif (çekinik) ve multifaktöriyel genetik hastalıklarda hasarlı genin/genlerin bir araya gelme olasılığını, dolayısıyla kalıtsal hastalıklı bebek sahibi olma riskini artırmaktadır. Ayrıca; ölü doğum, düşük ve doğumsal anomali oranlarında da artışlar ortaya çıkmaktadır. 3. Genetik hastalık taşıyıcıları sağlıklı çocuk sahibi olabilmek için neler yapmalıdır? Konunun uzmanı bir hekimle birlikte durum değerlendirmesi yapılmalı, genetik analizlerle tanı doğrulanmalı, prenatal tanı ve pgd imkanları ile birlikte alınacak diğer önlemler planlanmalıdır. 4. Genetik hastalıklar tedavi edilebilir mi? Genetik hastalıkların önemli bir kısmında tedavi imkanları kısıtlı olmakla birlikte tedaviye cevap veren durumlar da bulunmaktadır. Örneğin FMF, Fenilketonüri, Konjenital adrenal hiperplazi ve Turner sendromu gibi bazı hastalıklarda uygulanan tedavilerle klinik belirtiler hafifletilebilmektedir. 5. Genetik analizler %100 sağlıklı bebek garantisi verir mi? Yapılacak analizler sadece araştırılan hastalıkla ilgilidir ve diğer hastalıklar hakkında bilgi vermemektedir. Ayrıca, genetik teknolojilerdeki hızlı ilerlemelere rağmen kullanılan tüm tekniklerin limitleri bulunmakta ve dünyanın gelişmiş merkezleri de dahil olmak üzere hiçbir genetik tanı merkezinde %100 sağlıklı bebek garantisi verilememektedir. 6. Daha önce yaptırmış olduğum genetik test raporu hakkında bilgi almak istiyorum. Ne yapmalıyım? Genetik test raporu da dahil olmak üzere elinizde bulunan diğer tüm tıbbi tahlil sonuçları ile birlikte konunun uzmanı bir hekimden genetik danışma hizmeti almanızı öneriyoruz. 7. Gebeyken röntgen çektirdim. Çocuğumda problem olur mu? Hamilelik döneminde radyolojik tetkiklerden kaçınılması önerilmektedir. Fetusün radyasyon duyarlılığı gebelik haftasına göre değişim göstermektedir. Ayrıca maruz kalınan radyasyon miktarı da önem taşımaktadır. Radyasyon maruziyeti durumunda genetik danışma alınması önerilmektedir. 8. Amniyosentez nedir? Ne zaman yapılabilir? Amniyosentez; bebeğin içinde bulunduğu gebelik kesesindeki sıvıdan kadın doğum uzmanlarınca ultrason eşliğinde örnek alınması işlemidir. Amniyosentezin 15-20. gebelik haftaları arasında yapılması önerilmekte ve işlemlerin 24. haftaya kadar bitirilmesi hedeflenmektedir. 9. Amniyosentez işlemiyle alınan biyolojik örnek kime aittir? Test sonuçlanması ne kadar sürer? Amniyosentez ile alınan sıvı örneğinden elde edilen hücreler fetüse aittir. Bu hücreler kültür ortamına alınarak çoğaltılır ve elde edilen metafaz kromozomları ışık mikroskobuyla sayısal ve yapısal olarak analiz edilir. Oldukça uğraş gerektiren bir süreçtir ve genellikle 2-4 haftada sonuç verilebilmektedir. Ayrıca, moleküler genetik araştırmaların gerektiği durumlarda ilave süreler söz konusu olabilmektedir. 10. Amniyosentezden sonra düşük riski ne kadardır? Bebeğe zararı var mıdır? Bu işlem sonrasında % 0,5 (1/200) civarında düşük riski bulunmaktadır. Uzman hekimler tarafından yapılacak amniyosentez işleminin fetüs sağlığını olumsuz etkilemediği bilinmektedir. 11. Amniyosentez işleminin anneye zararı olur mu ? İşlem sonrasında sıvı alınan bölgede yanma ve kızarıklık ortaya çıkabilir. Çok düşük oranda enfeksiyon riski bulunmaktadır. Amniyosentez işlemi sonrası dinlenme ve ağır işten kaçınma önerilmektedir. 12. Down sendromu nedir? İnsan hücrelerinde iki tanesi cinsiyet kromozomu olmak üzere toplam 46 kromozom bulunmaktadır. Hücrelerde 21 nolu kromozomun iki yerine üç adet olması durumunda Trizomi 21 Sendromu (Down sendromu) ortaya çıkmaktadır. Bu hastalarda zeka geriliği ile birlikte diğer bir çok anomali de bulunabilmektedir. Klinik olarak Down sendromu düşünülen durumlarda kromozom analizi yapılmalı ve sonuçlar genetik danışma ile birlikte verilmelidir. 13. Gebelikte bebeğe zeka testi yapılabilir mi? Gebeliğin 11-14. haftalarında ikili test ya da 14-22. haftalarında üçlü tarama testleri yapılarak Nöral tüp defektleri ile Trizomi 21 (Down Sendromu) ve Trizomi 18 gibi sayısal kromozom anomalisi riskleri araştırılmaktadır. Bu testlerle belirlenen hastalıkların çoğu mental retardasyonla (zeka geriliği) birlikte olduğundan halk arasında zeka testi olarak bilinmektedir. İkili ve üçlü testlerin sadece risk belirleme amaçlı tarama testleri olduğu unutulmamalıdır. Bu testlerde yüksek risk saptanması durumunda kesin tanı amacıyla genetik analizler önerilmelidir. 14. Preimplantasyon genetik tanı nedir? Preimplantasyon genetik tanı, IVF (tüp bebek) yöntemi ile oluşan erken embriyodan alınan tek hücreden DNA tabanlı analizlerin yapılması işlemidir. Bu yöntemle seçilen embriyo anne rahmine yerleştirilmekte ve sağlıklı bebek sahibi olma olasılığı artırılmaktadır. Bu prosedürün en önemli avantajı fetüsün tıbbi müdahale ile alınma olasılığının minimalize edilmesidir.

http://www.biyologlar.com/genetik-hastaliklar-hakkinda-sik-sorulan-sorular

GELECEĞİN MİMARI "BİYOTEKNOLOJİ"

GENETİK MÜHENDİSLİĞİ İstenilen özellikte organizma yaratmak amacıyla istenilen genleri kromozomlara ekleme yöntemlerini kapsayan uğraşların tümü, genetik mühendisliği çatısı altında toplanmaktadır. Gregor Mendel'in özellikle bezelye bitkileri üzerinde yaptığı çaprazlama çalışmalarının amacı temel genetik kurallarını keşfetmekti. Elde edilecek bulgularla doğanın imkan verdici en üstün kalitedeki ürünü çok sayıda elde fikrine de hizmet ediyordu. Fakat yapılan çalışmalar ayni tür içindeki bitkiler ile kısıtlı kalmaktaydı. Yıllar boyunca organizmalar da istenilen niteliklerin elde edilmesi çalışmaları tür içinde kısıtlı kalmış ve büyük ölçüde rastlantıya dayanmıştır Bu kısıtlamanın bilincine varan araştırmacılar çalışmalarını tür engelini kırma yolunda çabalara yöneltmiştir. Genetik mühendisliği diye bir terimin kullanılmadığı ve bugünkü anlamda çalışmaların henüz yapılmadığı yıllarda özellikle bitki ıslahçıları çeşitli teknikler geliştirerek doğal olarak eşleşmeyen türlere ait organizmalar arasında gen aktarımları (yapay tozlaştırma) gerçekleştirmişlerdir. Elde ettikleri rekombinant bireyleri eşeyli üreme(çiftleşme) yöntemi ile üretmeyi başarmışlardır. Bu şekilde doğal olarak meydana gelemeyen gen kombinasyonları elde etmeye yönelik uğraşlar, bir anlamda genetik mühendisliğinin başlangıcı olarak kabul edilebilir. 1960'li yıllarda somatik (2n kromozoma sahip vücut hücreleri=diploid) hücrelerin birbirleriyle kaynaşabildiği (Füzyon yöntemi) ortaya konulmuş ve genetiğin biliminin bir alt birimi olan somatik hücre genetiğine dayanarak, gen aktarım çalışmaları somatik hücre düzeyine indirilmiştir. Bu çalışmalar eşeyli üremenin dışındaki yollardan yararlanılan ilk çalışmalardı. 1970'li yılların başında ise, o yıllara kadar oluşan temel ve teknik bilgilerin birikiminin yardımıyla, amaçlanan genetik yapıya uygun gen kombinasyonu yaratılmasına yönelik çalışmalar moleküler düzeye inmiştir. DNA nin üç boyutlu moleküler yapısının keşfi, replikasyon, rekombinasyon yeteneklerinin aydınlatılması, genin işlevsel tanımının yapılması, gen anlatımının ve düzenlenmesi işlevlerini açıklığa kavuşturmuş, böylelikle rekombinant DNA teknolojisinin gelişimine de ön ayak olmuştur. Rekombinant DNA teknolojisi, gen klonlamasi, DNA klonlamasi, genetik manipülasyon ve en popüler olarak da genetik mühendisliği terimleri bir çok bilim adamı tarafında çoğunlukla es anlamlı olarak kullanılmaktadır. Genetik Mühendisliği; genetik analiz yapmak ya da istenilen özellikte organizma geliştirmek amacıyla, bir tür içinde veya farklı türlere ait organizmaların genleri üzerinde, planlı yürütülen çalışmalardır. Bu teknolojinin uygulama alanları, temelde, ekonomik bakımdan önemli organizmaların ve onların özelliklerinin geliştirilmesini kapsamaktadır. Genetik mühendisliğinin etkilediği uygulama alanlarının başında endüstri gelmektedir. Çeşitli endüstriyel ürünlerin (ilaç,besin vb.) istenilen nitelikte ve bol miktarda elde edilmesine yönelik çalışmalar endüstri sektörünün bu teknolojiye büyük yatırımlar yapmasına yol açmıştır. Tipta ,özellikle kalıtsal hastalıkların tanısının konmasına olanak sağlamakta ve bu hastalıkların tedavisi açısından da ileriye yönelik ümit vermektedir. Tarım ve hayvancılıkta da istenilen niteliklere sahip bitki ve hayvanların yetiştirilmesinde büyük ölçüde kullanılmaktadır. Bunlara ek olarak, çevre kirlenmesinin önlenmesi, madencilik vb. daha bir çok alanda genetik mühendisliğinden yararlanılmaktadır. Bir Amerikan firması, mısır yada daha başka tahılların köklerinde yasayan Pseudomonas fluorescens türü bakteriye, normalde toprakta yasamayan, ama böcek öldürücü bir zehir sentezleyebilen Bacillus thuringiensis adli bakterinin zehir kodlayan gen bölgesini eklemiştir. Genetik yapısı değiştirilerek tarlalara bırakılan Pseudomonas fluorescens, tahılların köklerine zarar veren mayıs böcekleriyle mücadelede çiftçilerin en büyük yardımcısı olmuştur. Tarımcılıkta etkin başarıların elde edilmesinde büyük katkısı olan genetik mühendisliği, ayni basariyi hayvancılık sektöründe henüz sağlayamamıştır. Bunun nedeni genetik araştırmacıları, henüz naklettikleri genin kromozomda nereye girdiğini kontrol edememeleri dolayısıyla da yanlış proteinlerin sentez edilmesidir. Yanlış proteinler, üretilen hayvanların fizyolojilerinde ve morfolojilerinde istenmeyen olumsuz sonuçların görülmesine sebep olur. Rekombinant DNA teknolojisinde izlenen olaylar dizisi genelde,bir organizmadan elde edilen ve içinde istenilen geni taşıyan DNA parçalarının, taşıyıcı özellikte bir DNA molekülüne bağlanarak rekombinant DNA oluşturulması, rekombinant DNA moleküllerinin uygun bir konak hücreye sokularak orada çoğaltılmasıdır. Çoğaltılan genler (DNA parçalar) ile kitaplıklar oluşturulmaktadır. Bu olaylar dizisine genel olarak gen klonlamasi adi verilir ve neticede çeşitli genlere ait bir kitaplık oluşturulur. Genetik Mühendisliğinde yürütülen çalışmaların aşamaları sırasıyla şöyledir: Gen izolasyonu: İstenilen geni taşıyan DNA parçalarının elde edilmesidir. Bu amaç için çeşitli yollar kullanılır. Bunlardan biri izole edilip saflaştırılmış DNA moleküllerini çift zincirli yapılarını bozmadan parçalamaktır. Bunun için özel enzimler kullanılmaktadır. Bu enzimler DNA molekülünde özel nükleotid dizilerini tanır ve orada kesmeler yapar. Rekombinant DNA moleküllerinin oluşturulması: İzole edilen geni taşıyan DNA parçalarının çoğaltılmasını sağlamak üzere onlara taşıyıcılık görevi yapacak uygun DNA moleküllerine bağlanmasıyla elde edilen moleküllere rekombinant DNA adi verilmektedir. Buna göre, genetik mühendisliğinde rekombinant DNA kavramı doğal olarak birlikte bulunmayan (farklı kökenli) DNA molekülleri arasında ,laboratuar koşullarında yaratılmış, yeni bir düzenlemeyi (birliği) ifade eder. Geni taşıyacak DNA molekülleri virüs DNAları, plazmidler ve cosmidlerdir. Uygun bir hücreye sokulması: Rekombinant DNA moleküllerinin konak hücreye sokulmasında vesiküller veya küçük ve suda erimeyen lipit(yağ) yapısında cisimler olan lipozomlar kullanılır. Lipozomlar hücrelerle(özellikle hayvan hücresi) kolaylıkla kaynaşır ve DNA hücre içinde serbest duruma geçer. Son yıllarda mikroenjeksiyon tekniği başarıyla kullanılmaktadır. Genin konak hücre içine çok ince iğne ile enjekte edilmesidir. Bakteriyofajlarin (Virüs) konak hücrelere de kendini esleyebilmesi esasına dayanarak genin, virüs içine yerleştirilip rekombinant DNA molekülünün oluşturulması ve istediğimiz geni taşıyan fajın, konak hücreye girmesi ile sağlanır. Bu yönteme Transfeksiyon adi verilmektedir. Çoğaltılan genlerin seleksiyonu: Konak hücrede istenilen genin bir çok kopyası oluşturulmasından sonra bu genlerin izole edilmesi gerekmektedir. Bunun için daha önceden radyoaktif olarak işaretlenmiş genler(marker) kullanılmaktadır. Bu işaret geni U.V. ışığının altında kendini belli edeceğinden kolaylıkla yeri saptanabilmektedir. Saptanan gen özel enzimler yardımı ile yabancı genden arıtılır ve saf olarak elde edilir. Bir diğer yöntem ise genin anlatım yapması ile konak hücrede fenotipik (gözlemlenebilen özellikler Ör:hücrede mavi renk plakları oluşturması) değişikliler oluşturması ile klonlanan hücreler ile klonlanmayanlar birbirlerinden ayrılabilir. Bütün bu işlemlerden sonra gen bankaları (genom kitaplığı) oluşturulur. Kitaplık bir organizmanın tüm genotipini DNA dizilerinin tümünü yada bir kısmını içeren DNA klonlari topluluğudur. 1997 Şubat ayında kuzu Dolly'i ortaya çıkaran klonlama teknolojisi ve ertesi yıl insana ait embriyonik kök hücresi kültürü oluşturulması genetik mühendisliğinde iki büyük atilimi gerçekleştirmiştir. Özellikle embriyonik kök hücreleri blastosistlerden, kişiye özel organ ve dokuların üretilmesi ile organ bağışında sürekli olarak sorun yaratan doku uyuşmazlığı sorununun ortadan kalkması, bu beklentiye temel oluşturuyor. Tedavi amaçlı klonlama fikrinden tam uyum içindeki yeni dokuların yaratılması düşüncesine geçiş ile yeni umutlar doğmuştur. Bu yöndeki çalışmaların neticeye ermesi ile bireyin kendi hücrelerinden üretilmiş organların nakli ile hasarlı organların değişimi mümkün olacaktır. Farklı histolojik karakterleri sergileyen hücrelerimizin aslında ortak bir DNA programına sahip olması, klonlama tekniklerine gerek kalmaksızın, nükleotid dizilerde yapılacak değişikliklerle arzu edilen tipte hücrelerin elde edilebilmesi mümkün olacaktır. *Bu yazı micmuss2.sitemynet.com/ sitesinden alınmıştır. KLONLAMA* Klon, birbirinin tıpatıp benzeri canlılara denir. Klonlama, mevcut bir canlının çeşitli yöntemlerle bir benzerinin kopyalanması işidir. İlk kez 1997 yılında Dolly adında bir koyun başarılı bir şekilde kopyalanmıştır. Basit bir anlatımla klonlama çekirdeği çıkartılmış yumurta hücresine, kopyalanacak canlının genetik materyalinin aktarılması esasına dayanır. ABD'nde bilim adamları, etik komiteleri ve politikacılar reproduktif klonlamanin, yani insan kopyalanmasının yasaklanması konusunda görüş birliğinde iken terapotik klonlama ise farklı değerlendirilmekte: Bilim adamları somatik hücre çekirdek transferi (somatic cell nuclear transfer: SCNT) yolu ile terapotik klonlamanin tıp alanında önemli tedavi yöntemlerini beraberinde getireceğine inanırken, etik komiteleri ise terapotik klonlamanin da sonuçta kaçınılmaz olarak reproduktif klonlama ya yol açacağına inandıkları için yasaklanması gerektiği görüsündeler. Bilim adamları, hastalıklı doku ya da organın yerine konulabilecek ve kişinin bağışıklık sistemi tarafından kabul edilecek doku ve organların klonlamasi ile Parkinson ve Alzheimer gibi norodejeneratif hastalıklar dahil pek çok hastalığın tedavisinde etkili olacak teropatik klonlamanin yasaklanmasının tıp alanında önemli gelişmelere engel olacağını düşünürken, yasa-yapıcılar ve etik komiteleri, yeni ilaç ve tedavi yöntemlerinin geliştirilmesinde insan kök hücrelerini içermeyen klonlama yöntemleri üzerinde çalışmaların yoğunlaştırılması gerektiği görüsündeler Tün bu görüş ayrılıkları, 1998 yılında Dr. John Gearhart (John Hopkin's University) ve Dr. James Thompson (University of Wisconsin)'in, birbirlerinden bağımsız olarak, insan pluripotent (her türlü özelleşmiş hücreye dönüşebilen) kök hücrelerini izole ettiklerini açıklamalarıyla daha da yoğunlaştı. Dr. Thompson in-vitro olarak büyütülmüş embriyodan alınmış hücreleri, Dr. Gearhart ise kürtajla alınmış fetustan elde edilen primordial hücreleri kullanmıştı ki insan kök hücre çalışmaları ile ilgili itilaflara yol açan da bu hücrelerin elde ediliş sekli idi. Otoritelerce kabul edilen su ki "insan embriyosu, döllenme anından itibaren kişi haklarına sahiptir ve embriyoya zarar veren veya onu yok eden her aktivite insan hayatini sonlandırmış kabul edilir." Kök hücre elde edilmesi sadece embriyodan elde edilen hücrelerle sinirli olmayıp insan kök hücreleri için alternatif kaynaklar ile ilgili çalışmalar yoğun bir şekilde devam etmekte. Yetişkin insan kök hücreleri, insan yağ hücreleri ve plasenta potansiyel kaynaklar olmakla beraber embriyonik kök hücreleri, plastisitesi diğer hücrelere göre daha fazla olduğu için tercih edilmekte. Temel olarak kök hücreleri aşağıdaki kaynaklardan biri yolu ile elde edilebilir: * Seçimli kürtajı takiben elde edilen insan fetus dokularından, * In-vitro fertilizasyon (IVF) ile elde edilmiş ve kısırlık için tedavi edilen çiftler tarafından daha fazla ihtiyaç duyulmayan embriyolardan, * Araştırma amacı ile bağışlanmış gametlerle in-vitro fertilizasyon (IVF) yolu ile elde edilen embriyolardan, * Aseksüel olarak somatik hücre transferi ya da yetişkin insan hücresi çekirdeğinin, çekirdeksiz bir insan ya da hayvan yumurtasına yerleştirildiği benzer bir klonlama tekniği ile elde edilen embriyolardan. *Bu yazı micmuss2.sitemynet.com sitesinden alınmıştır.

http://www.biyologlar.com/gelecegin-mimari-biyoteknoloji

Klonlama teknolojisinin gelişimi - Transgenik teknoloji

Transgenik teknoloji : Gen veya gen parçalarının bir fertten alınıp bir başka ferdin DNA’sına tranferi şeklinde düşünülebilir. Bu teknolojide gen veya genler döllenmiş yumurtaya aktarılır. Mesela kanser oluşturan insan genleri fare embriyolarına aktarılarak drog sanayiinde tedavilerin testinde kullanılabilmektedir. Bu teknoloji ile insan’dan koyun’a, domuz’a, sığır’a ve keçi’ye gen aktarımı yapılmakta, sütlerinde insan proteini üretilmesi yanısıra organ, doku ve kan üretme imkanı da bulunmaktadır. Bu protein ile emphysema ve cystic fibrosis gibi hastalıklar tedavi edilebilmektedir. Çekirdek transfer teknolojisi : Bu teknoloji bir hücredeki bütün genomu yani somatik kromozomların bir hücreden diğerine naklini ifade eder. Çekirdek, döllenmiş yumurta hücresinden alınmakta ve çekirdeği alınmış fakat döllenmemiş yumurta hücresine yerleştirilmektedir. Bu sistemle uygulanan böyle bir teknik klonlama olarak değerlendirilmemektedir. Zira bir duplikasyon işlemi bulunmamaktadır. Ancak burada sitoplazmada bulunan mitokondri DNA’ları farklıdır. Çekirdek teknolojisini kullanarak yapılan klonlama : İki şekilde yapılmaktadır; Embriyo klonlama :Alınan örnek, döllenmiş bir embriyodan alınıp yine aynı annenin yumurtasında çekirdek transferi yapılırsa bu durumda mitokondri DNA’ları aynı olacaktır. Bu teknoloji benzer ikizlerin oluşturulmasında kullanılmakta ve embriyo klonlama olarak bilinmektedir. Sığır, kurbağa ve farede de başarılı şekilde denenmiştir. İnsanlarda da bu tip klonlama yapılmış ancak bu ikizler yaşatılamamıştır. Bununla beraber basında klonlama olarak isimlendirilmesine rağmen bu uygulamada farklı çekirdekler kullanıldığı için bunlar gerçek klonlar değillerdir. Normal canlı klonlama : Dolly doğuncaya kadar, normal bir canlıyı klonlamak mümkün değildi. Organizma döllenmiş bir yumurtadan meydana gelmekte ve her bir hücre döllenme sonucunda oluşan tüm bir genomu içermektedir. Her bir hücre birbirinin tamamen aynısıdır. Ancak, büyüme ve gelişme olayları hücrelerde farklılaşma meydana getirmekte ve beyin dokusu, kalp dokusu, deri, kemik vs oluşmaktadır. Bazı genler somatik hücrelerde bu şekilde özel görevlere ayrıldığı zaman çalışmasını durdurmakta ve sadece ilgili deri, kemik gibi genleri çalışmaktadır. Embriyonik klonlamada farklılaşmaya başlamamış döllenmiş yumurta hücresinin çekirdeği (genom) kullanılmaktadır. Dolly’nin oluşumunda böyle bir dokudan alınan hücreyle bu işlem başarılmıştır. Bu transfer sonunda, somatik dokudaki çalışmayan genler tekrar çalışmaya başlamış ve genlerin çalışması organların oluşmasıyla durmuştur. Genlerin gerektiği zamanda çalışması veya çalışmasını durdurması klonlamanın esasını oluşturmaktadır. Bu işlem 277 denemeden sadece birinde başarıya ulaşmıştır. Bu uygulamada döllenmemiş yumurtanın çekirdeği çıkarılarak, somatik hücre çekirdeği bu yumurtanın içine yerleştirilmiştir. Oluşan zigot, herhangi bir koyuna nakledilerek gelişmeye bırakılmıştır. Bu uygulamanın embriyonik klonlamadan farkı, mitokondriyal DNA’nın farklı olmasından kaynaklanmaktadır. Burada ilginç olan diğer nokta, Dolly bir babaya sahip değildir, fakat 4 anneye sahip olabilir. Mesela, annesi; 1- Genomu kullanılan bir dişi olabilir 2- Yumurta hücresini veren dişi olabilir 3- Gameti taşıyan bir dişi olabilir 4- Dişi, klonlanmış kuzuyu taşıyabilir. 4.Genetik ikizlik : İkizlik kavramı iki veya daha fazla benzer kardeşlerin oluşması anlamındadır. İkizlik, seksüel bir üretim sonucudur. Hücredeki bütün DNA iki farklı ferdin DNA’larının yarısını taşımaktadır. Döllenmiş yumurta iki ya da daha fazla parçaya tekrar bölünecek ve aynı cinsiyette fertler meydana getirecektir. Bu olayın çekirdek transferi ile ilgisi yoktur. Klonlama ise aseksüel bir üretimle ilgilidir. Klonlamada mitokondri DNA’ları farklı olabilir ancak ikizlikte hepsi aynı olmak zorundadır.

http://www.biyologlar.com/klonlama-teknolojisinin-gelisimi-transgenik-teknoloji

Bitkisel ve Hayvansal Dokuların Yapısı ve Özellikleri

Belirli görevleri yapmak üzere bir araya gelen hücre topluluğuna doku denir. Örneğin sinir hücreleri sinir dokuyu meydana getirir. Dokuyu meydana getiren hücrelerin görevleri, şekilleri, yapısı, DNA miktarı, aktif gen çeşitleri, enzim çeşitleri, embriyonik kökenleri aynı olmasına rağmen büyüklükleri ve sitoplazma miktarları farklıdır. Dokuları inceleyen bilim dalına histoloji denir. Dokular; hücreler ve hücreler arası maddeden meydana gelmiştir. Ara madde inorganik ve organik maddelerden meydana gelmiştir. Ara maddeler bazı dokularda az, bazı dokularda fazladır. Yine ara maddeler kan dokusunda sıvı iken kemik dokusunda katıdır. BİTKİSEL DOKULAR Bitkisel dokular bölünür ve bölünmez olmak üzere ikiye ayrılır. A)BÖLÜNÜR DOKU Bölünür dokuların genel özellikleri: *Kök, gövde ve dal uçlarında bulunur. *Boyuna uzama ve enine kalınlaşmayı sağlar. *Mitoz bölünmeyle çoğalırlar. *Metabolizmaları hızlıdır. *Hücreleri küçüktür. *Kofulları küçük ve az sayıdadır. *Sitoplazmaları boldur. *Çekirdekleri büyüktür. *İnce çeperlidir. *Hücre arası boşlukları azdır. 1)BİRİNCİL BÖLÜNÜR DOKU Birincil bölünür dokunun genel özellikleri: *Embriyodan itibaren hayat boyu bölünebilme kabiliyetinde olan bir dokudur. *Bitkinin kök, gövde ve dal uçlarında bulunur. *Bitkinin boyca büyümesini, uzamasını sağlarken; bitkinin diğer dokularının da oluşmasını sağlar. *Bölünür dokunun bulunduğu kısma büyüme konisi yani büyüme noktası denir. *Büyüme dokusu kökte kaliptra, gövde de genç yapraklar (tomurcuk yapraklar) tarafından korunur. *Bu dokunun bazı hücreleri hormon üretir. Primer meristem hücrelerinin bölünmesiyle dıştan içe doğru dermotojen, perimblem ve plerom tabakaları oluşur. 2)İKİNCİL BÖLÜNÜR DOKU Bölünmez dokuların sonradan bölünebilir özellik kazanmasıyla oluşan dokudur. İkincil bölünür dokunun özellikleri: *Çift çenekli (dikotil) ve kozalaklı bitkilerde bulunur. *Bitkilerde kök ve gövde de enine büyümeyi sağlar. *Kök ve gövde de ilkbaharda büyük hücreler sonbaharda küçük hücreler meydana getirerek bitkilerde yaş halkalarını oluşturur. *Bu dokudan kambiyum ve mantar kambiyumu meydana gelir. Kambiyumun diğer adı iç kambiyum, mantar kambiyumunun diğer adı ise dış kambiyum ya da fellogen adını alır. Kambiyum ilkbaharda ve sonbaharda farklı hücreler meydana getirerek hem bitkinin enine büyümesini sağlar hemde yeni iletim demetlerini oluşturur. Dış kambiyum bitkiyi dış tkilerden koruyan mantar dokuyu meydana getirir. B)BÖLÜNMEZ DOKU (DAİMİ DOKU) Bölünür dokuların farklılaşmasıyla meydana gelen dokulardır. Bölünmez dokuların genel özellikleri: *Bölünebilirlik özelliği yoktur. *Hücreleri büyük, hücre çekirdekleri küçüktür. *Metabolizmaları yavaştır. *Kofulları küçüktür. *Hücreler arası boşluk fazladır. *Bazı hücreleri canlı, bazıları ölüdür, cansızdır. 1)TEMEL DOKU (PARANKİMA) Diğer adı parankima dokudur. Diğer dokuların etrafını saran ve bitkide kök, gövde korteksinde ve yaprağın mezofil tabakasında diğer dokularında etrafında bulunan dokudur. Temel doku hücrelerinin özellikleri: *Hücreleri ince zarlı, bol sitoplazmalıdır. *Hücrelerinde hücre arası boşluk fazladır. *Hücrelerinde kloroplast, kromoplast, lökoplast bulunur. *Kofulları küçük ve az sayıdadır. *Hücreleri canlıdır. a)ÖZÜMLEME PARANKİMASI *Bitkinin genç dallarıyla yaprakta bulunur. *Bitkinin özümleme işini gerçekleştirir. *Hücrelerinde kloroplast bulunur, fotosentezi geliştirir. *Yaprakta özümleme parankiması mezofil tabakasında bulunur. b)İLETİM PARANKİMASI Özümleme parankiması ile iletim demetleri arasında bulunur ve madde iletiminden sorumludur. c)DEPO PARANKİMASI *Bitkinin türüne göre kök, gövde, yaprak, tohum gibi kısımlarda madde depolanmasında görevlidir. *Hücrelerinde lökoplast bulunur. Patates yumrusunda (gövde) nişasta, fasulye tohumunda protein, cevizde yağ, kaktüste su depolanması örnek olarak verilebilir. d)HAVALANDIRMA PARANKİMASI *Gaz alışverişi açısından zor koşullarda yaşayan bataklık ve su bitkilerinde görülür. *Nilüfer ve edodea bitkilerinde görülür. *Hücreler arası boşluk çok fazladır. Bu boşluklarda bitki hava depolayarak gerektiğinde kullanıyor. *Kara bitkilerinde sünger parankimasında aynı işlevi görür. 2)KORUYUCU DOKU Koruyucu dokunun özellikleri: *Bitkileri dış ortam şartlarına karşı koruyan dokudur. *Hücreler arası madde azdır. *Hücrelerinde kloroplast yoktur. a)EPİDERMİS *Genellikle bitkilerde tek hücre sırasından meydana gelir. *Otsu ve odunsu bitkilerin yapraklarında bulunur. *Hücrelerin bazıları farklılaşarak tüy ve stomaları meydana getirir. Tüyler örtü, salgı, tırmanma, emme ve koruma görevi yapar. Tek bir epidermis hücresi farklılaşarak basit tüyleri, birden fazla epidermis hücresi farklılaşarak bileşik tüyleri meydana getirir. *Epidermis hücrelerin hava ile temas eden kısımlarına kutin adı verilen bir madde salgılanır. Bu madde kütikula tabakasını meydana getirir. Kütikula bitkiyi su kaybına karşı korur. *Epidermisten türevlenen stomalar bitkide terleme ve gaz alışverişini sağlar. Kurak bitkilerde stomalar bitkinin yapraklarının altında nemli bölgelerde yaprağın üst kısmında bulunur. b)MANTAR DOKU *Bölünür dokulardan oluşan seconder meristemin bir türü olan mantar kambiyumundan meydana gelir. *Hücreleri ölüdür. *Çekirdek ve sitoplazmaları kaybolmuştur. *Otsu bitkiler ile odunsu bitkilerin yapraklarında bulunmaz. *Periderm dokusunda gaz alışverişini sağlayan stomaların yerine geçen lentisel (kovucuk) vardır. Uzun, yarık veya kabartı şeklindedir. *Yaprak sapıyla gövde arasında mantar doku meydana gelirse yaprak beslenemeyip dökülür. C)KAS DOKU3)DESTEK DOKU Destek dokunun özellikleri: *Bitkinin kök, gövde, yaprak, tohum, meyve gibi kısımlarında bulunur. *Bitkinin ağırlığını taşıyan ve desteklik sağlayan dokudur. *Otsu bitkilerde desteklik turgor basıncıyla sağlanır. a)PEK DOKU (KOLLENKİMA) *Hücreleri canlıdır. *Genç bitki gövdeleri ile odunsu bitkilerin yaprak sapıyla çiçek sapında bulunur. *Hücre çeperlerinde selüloz ve pektin birikimi görülür. *Bu maddelerin birikimi hücrelerin köşelerinde oluyorsa köşe kollenkiması, hücre çeperinin her yerindeyse levha kollenkiması adını alır. b)SERT DOKU (SKLERENKİMA) *Hücreleri ölüdür. *Hücreleri uzun lif şeklinde olanlarına sklerenkima lifleri denir. Keten ve kenevir bitkisinde gösterilir. *Hücrelerin enleri boylarına eşit olanlara ise taş hücreleri denir. *Ceviz, fındık, ayva, armut gibi bitkilerde görülür. 4)İLETİM DOKU Bitkilerde madde taşınmasının gerçekleştiği dokudur. Odun (ksilem) ve soymuk (flöem) boruları olmak üzere ikiye ayrılır. a)ODUN BORULARI Bölünür doku hücrelerinin üst üste gelerek zamanla sitoplazma ve çekirdeklerini kaybetmesiyle meydana gelir. Odun borularının genel özellikleri: *Hücreleri ölüdür. *Taşıma kökten gövdeye doğrudur. *Hücreleri enine çeperleri eriyerek uzun boru şeklini almıştır. *Hücrelerin kenarlarındaki çeperlerde kalınlaşma olmuştur. *Çapları dar olanlara trakeid, çapları geniş olanlara trake denir. *Taşıma hızlıdır. *Etraflarında parankima ve sklerenkima hücreleri bulunur. b)SOYMUK BORULARI Soymuk borularının genel özellikleri: *Üst üste gelen hücrelerin uzaması, sitoplazma ve çekirdeğin kenara çekilmesiyle meydana gelir. *Bu hücrelerin enine çeperlerinde kısmen erimeler meydana gelir. O yüzden bu borulara kalburlu borular denir. *Taşıma iki yönlüdür. Yani kökten gövdeye gövden köke doğrudur. *Yapraklarda fotosentezle üretilen glikoz ihtiyaç duyulan organlara ve depo organlarına taşınır. *Kökte üretilen bazı aminoasitler ihtiyaç duyulan gövdedeki organlara taşınır. *Taşıma yavaştır. *Hücreleri canlıdır. *Kalburlu boruların yanında canlı, bol sitoplazmalı, uzun hücreler bulunur. 5)SALGI DOKU Diğer dokuların arasında tek tek veya grup halinde bulunan dokudur. Bitkilerde metabolizma sonucu artık madde oluşturulmalarına rağmen çok önemli görevleri vardır. Salgı dokunun özellikleri: *Hücreleri canlı, bol sitoplazmalı, büyük çekirdekli ve küçük kofulludur. *Selüloz ve odun özü bitkilerde desteklik sağlar. *Reçine ve taneli salgılar bitkileri mikroorganizmalara karşı korur. *Bitkilerde salgılanan bal özü ve çiçek tozu çiçeklerin tozlaşmasında kullanılır. *Kauçuk ağacı ve haşhaş gibi bitkilerden salgılanan süt salgısı yaraların çabuk iyileşmesinde kullanılır. *Böcekçil bitkilerin yapraklarından salgılanan salgılar böceklerin sindirilmesinde kullanılır. Hücre içinde salgılanan maddeler, hücre içinde kalıyor ise hücre içi salgılar denir. Defne yaprağındaki gibi tek bir hücre alabileceği gibi kauçuk ağacında olduğu gibi bir veya birkaç hücrede bir arada bulunabilir. Hücre içinde üretilen salgı hücre dışına veriliyor ise hücre dışı salgılar denir. Portakalda olduğu gibi salgı cebinde biriktirdiği gibi, çamda, reçine kanallarında da birikebilir. HAYVANSAL DOKULAR Hayvansal dokular epitel doku, bağ ve destek doku, kas doku ve sinir doku olmak üzere başlıca dört gruba ayrılır. A)EPİTEL DOKU Vücudun iç ve dış boşluklarını örten ve kan damarlarının iç kısmını döşeyen ve salgı yapısını oluşturan dokudur. Epitel dokunun genel özellikleri: *Hücreler arası maddeler azdır. *Kan damarı bulunmaz. *Alt tarafta bağ doku vardır. Epitel dokunun bağ dokusuna taban zarı ya da bazal lamina denir. *Koruma, emme, salgılama ve duyu alma özellikleri vardır. Bu yüzden epitel doku üçe ayrılır. 1)ÖRTÜ EPİTELİ Örtü epiteli vücudu fiziksel ve kimyasal etkilere karşı koruyan ve madde alışverişinden sorumlu olan dokudur. Örtü epiteli ikiye ayrılır. a)TEK KATLI ÖRTÜ EPİTELİ Tek katlı örtü epiteli kendi arasında tek katlı yassı örtü epiteli, tek katlı kübik örtü epiteli, tek katlı silindirik örtü epiteli olmak üzere üçe ayrılır. TEK KATLI YASSI ÖRTÜ EPİTELİ: Epitel hücreleri tek sıra, yassı hücrelerden meydana gelmiştir. Akciğerde alveollerde ve kılcal damarların iç yüzeyinde bulunur. TEK KATLI KÜBİK ÖRTÜ EPİTELİ: Epitel hücreleri tek katlı, yan yana gelmiş kübik hücrelerden meydana gelmiştir. Böbrek alveollerinde, tiroid bezinde ve salgı bezlerinde bulunur. TEK KATLI SİLİNDİRİK ÖRTÜ EPİTELİ: Hücreler tek sıra silindirik hücrelerden meydana gelir. Bağırsaklarda, soluk borularında bulunur. Bunların üst kısımlarında siller olabilir. b)ÇOK KATLI ÖRTÜ EPİTELİ Çok sayıdaki epitel hücrelerin tabaka halinde dizilmesiyle meydana gelir. Deri, sindirim sistemi organlarının iç yüzeyi, anüs ve idrar torbasının iç yüzeyinde bulunur. Deride en üst kısımda bulunan hücreler hem yassıdır hemde iç kısımlarında keratin adı verilen bir protein birikir. Keratin tabakası deriyi fiziksel ve kimyasal etkilere karşı korur. Derinin epidermis denilen kısmında çok katlı örtü epiteli vardır. Epidermisin en alt kısmındaki hücrelerde deriye renk veren hücreler bulunur. Bu hücreler melonin adı verilen renk maddesi üretirler. İdrar kesesinin iç yüzeyindeki çok katlı örtü epitelinin iç yüzeyindeki hücreler prizmatiktir. Bu prizmatik hücreler basınca karşı dayanıklıdır. İdrarın oluşturmuş olduğu basınç sonucunda bu hücreler yassılaşarak bu basınca bir müddet dayanabilir. Bu yüzden bu epitele çok katlı örtü epiteli denir. 2)SALGI (BEZ) EPİTELİ Epitel hücreleri salgı yapma özelliğine sahip ise bu epitele salgı ya da bez epiteli denir. Hücre sayısına ve salgılarını döktükleri yere göre isimlendirilirler. a)BİR HÜCRELİ BEZLER Silindirik epitelden meydana gelir. Salgılarına mukus denir. Ağız, burun, kurbağa derisi yani sindirim kanalıyla solunum organının iç yüzeyinde bulunur. Bu hücrelere goblet hücresi denir. b)ÇOK HÜCRELİ BEZLER Bir grup halindeki hücrelerin ürettiği salgı epitelidir. Bu salgılarını döktükleri yere göre üçe ayrılırlar. KANALLI BEZLER (ENZOKRİN): Bu salgı bezleri salgılarını bir kanal ile vücut dışına veya bir organa verirler. Süt, ter, yağ bezleri vücut dışına pankreas salgısını bir kanalla on iki parmak bağırsağına bırakır. KANALSIZ BEZLER (ENDOKRİN): Bu bezlerin salgılarına hormon denir. Salgılarını direk kana verirler. Tiroid, paratiroid, böbrek üstü bezi, hipofiz bezi, endokrin bezleridir. KARMA BEZLER: Hem iç hemde dış salgı yapabilme özelliğindedir. Yani hem enzim hem hormon üretebilirler. Pankreas tipik bir örnektir. 3)DUYU EPİTELİ Epitel hücrelerinin aralarına yerleşmiş dış ortamdan gelen fiziksel ve kimyasal uyarıları alan epiteldir. Bu epitellerin dışa bakan kısmında duyuları almaya yarayan almaç (reseptör) adı verilen bir kısım bulunur. Dildeki tat almaya yarayan, geniz boşluğunda koku almaya yarayan, gözde retina tabakası duyu epiteline örnek olarak verilebilir. B)BAĞ VE DESTEK DOKU Mezoderm tabakasından meydana gelir. Bu dokuların hücreler arası maddesi çok fazladır. 1)TEMEL BAĞ DOKU Organları birbirine bağlayan ve organların etrafını kaplayan bir dokudur. Hücreler ve hücreler arası madde vardır. Hücreleri üç grupta inceleyebiliriz. a)FİBROBLAST Temel bağ dokunun ana hücreleridir ve bağ dokunun liflerini oluştururlar. b)MAKROFJLAR Vücuda giden mikroorganizmaları yok ederler. c)MAST HÜCRELERİ Heparin ve histamin salgılarlar. Heparin kanın damar içinde pıhtılaşmasını önler. Histamin kılcal damarların geçirgenliğini sağlar. Temel bağ dokunun hücreler arası maddesi yarı sıvı olan matriks ve liflerden meydana gelir. Lifler ise üçe ayrılır. KOLLOGEN LİFLER: Demet halinde bulunur. Bağırsak gibi yumuşak yapılı organlarda ince kasların kemiklere bağlandığı tendonlarda bulunur. ELASTİK LİFLER: Yay gibi esneyebilme özelliği vardır. İnce liflerden meydana gelmiştir. Bunlar damarlarda ve alveollerde bulunur. AĞSI LİFLER: Lenf düğümlerinde, kemik iliğinde, karaciğerde ve dalakta bulunur. 2)KIKIRDAK DOKU Omurgalıların embriyonik dönemde kıkırdaktır. Daha sonra kıkırdak doku yerini kemik dokuya bırakır. Ancak burun, kulak ve kaburga uçlarında kıkırdak doku devamlılığını sürdürür. Köpekbalıklarının iskelet sisteminin tamamı kıkırdak dokudan meydana gelmiştir. *Kıkırdak dokunun hücresine kondrosit, ara maddesine de kondrin denir. *Elastik yapıdadır. *Kıkırdak dokuda kan damarı ve sinirler bulunmaz. *Alt taraftaki bağ dokudan difüzyonla beslenir. *Kıkırdak doku ara maddesinde bulunan liflerin özelliğine göre üçe ayrılır. Kıkırdak doku hücreleri lakün adı verilen boşluklarda bulunurlar. Lakünlerde ikili veya dörtlü hücreler bulunabilir. a)HİYALİN KIKIRDAK Embriyonik dönemdeki kıkırdaktır. Ergin bireyde burun iç kısımlarında, kaburga uçlarında ve soluk borusunda bulunur. Ara maddesinde bol miktarda kollogen lifler bulunur. b)ELASTİK LİFLER Ara maddesinde kollogen liflerin yanında bol miktarda elastik lifler bulunur. Kulak kepçesinde, burun ucunda ve östaki borusunda bulunur. c)FİBRÖZ KIKIRDAK Ara maddesinde kollogen lifler çok miktarda bulunur. Omurlar arasındaki disklerde, diz kapağında ve uzun kemiklerde bulunur. 3)KEMİK DOKU Köpekbalığı dışında bütün omurgalıların iskeletini oluşturur. Hücrelerinde osteosit, ara maddesinde osein bulunur. Ara maddesinde organik ve inorganik maddeler bulunur. Organik olanlar protein ve kollogen liflerdir. İnorganik olanlar kalsiyum karbonat, kalsiyum fosfat, kalsiyum klorür gibi tuzlardır. Kalsiyum tuzları kemiğin sertleşmesini sağlarken organik olan protein ve kollogen lifler ise kemiğin esnek olmasını ve kırılmasını önler. Kemikler yaşlandıkça ara madde de kalsiyum tuzları artarken organik madde azalır. O yüzden yaşlı insanların kemikleri çabuk kırılır, geç iyileşir. Kalsiyum tuzları ara madde de azalırsa kemik yumuşar ve eğilmeler meydana gelir. Bu olaya raşitizm denir. C ve D vitaminleri ile tedavi edilebilir. Kemik dokusunun en dış kısmında periost bulunur. Periost kemiğin beslenmesini ve onarılmasını sağlar. Kemik hücreleri sitoplazmik uzantılara sahiptir. Bu sitoplazmik uzantılar ile hücreler birbirleriyle bağlantı kurar. Kemik dokular sert (sıkı) kemik ve süngerimsi kemik olmak üzere ikiye ayrılır. a)SERT (SIKI) KEMİK Uzun kemiklerin gövdesi ile yassı ve kısa kemiklerin dış kısmında bulunur. Bu dokuda bol miktarda kan damarı ve sinirler bulunur. Hücreler bir kanal etrafında dairesel şekilde dizilirler. Bu kanala havers kanalı denir. b)SÜNGERİMSİ KEMİK Uzun kemiklerin baş kısımlarıyla kısa ve yassı kemiklerin iç kısımlarında bulunur. Hücreler sıkı kemikteki gibi düzenli değildirler. Aralarında çok fazla miktarda boşluklar bulunur. Bu boşluklarda ise kırmızı kemik iliği bulunur. Süngerimsi kemik dokuda alyuvar ve akyuvar hücreleri üretilir. 4)YAĞ DOKU yağ doku hücrelerine lipoblast denir. Lipoblast hücreleri başlangıçta yıldız şeklindedir. Daha sonra içinde yağ damarcıklarının birikmesiyle yuvarlak şekil olur. Yağ dokunun üç önemli görevi vardır: *Yağ depolaması yapar ve diğer hücrelerin gereksinim duyduğu enerji ham maddesini sağlar. Bu yüzden kış uykusuna yatan hayvanlar, uzun mesafelere uçan kuşlar ve böcekler önceden yağ depolaması yapar. *Derinin altındaki yağ tabakası ısı kaybını önler ve hayvanı soğuğa karşı korur. Bu yönüyle adeta bir yalıtım maddesi gibi görev yapar. *İç organların çevresinde sürtünmeyi azaltarak onların çalışmalarını kolaylaştırır ve herhangi bir çarpmada ezilmekten korur. 5)KAN DOKU Kan dokusu hücreler ve hücreler arası maddelerden meydana gelmiştir. Hücreler arası maddeye plazma denir. Plazma kanın %55′ini, hücreler ise %45′ini oluşturur. Kanın görevleri şunlardır: *Kan hücrelere oksijen ve besin taşır. Hücrelerde oluşan artık maddeleri de vücuttan atılmak üzere ilgili organlara taşır. *Vücut savunmasında görevlidir. *Düzenleme görevi vardır. Kanın pH’ının 7.4′te sabit kalmasını ve hücreler arası sıvının dengelenmesinde görev alır. a)PLAZMA Plazmanın büyük bir bölümü sudur (yaklaşık %92). Geri kalan kısmında ise plazma protein, aminoasitler, karbonhidratlar, oksijen gazları, artık maddeler (üre, ürik asit) gibi maddelerden meydana gelmiştir. Plazmada bulunan en önemli karbonhidrat glikozdur. 100 ml kanda 80-100 mg glikoz bulunur. Kan proteinleri fibrinojen, albumin, globulin (globin) olmak üzere üçe ayrılır. Karaciğerde, makrofaj hücrelerde ve kemik iliğinde üretilip kana verilirler. FİBRİNOJEN: Kanın pıhtılaşmasını sağlar. ALBUMİN: Kanın ozmotik basıncını dengeler. GLOBULİN (GLOBİN): Antikorların yapısını oluşturur Kan dokusu hücreler e fibrinojenden ayrıldığında üstte sarı bir kısım kalır. Bu kısma serum adı verilir. b)KAN HÜCRELERİ Kan hücreleri alyuvar, akyuvar ve kan pulcukları olmak üzere üçe ayrılır. ALYUVAR (ERİTROSİT): Hücrelere oksijen taşıyan önemli kan hücreleridir. Hücrelerde oluşan karbondioksiti de akciğerlere taşır. Yapısında hemoglobin adı verilen kana kırmızı rengini veren molekül bulunur. Hemoglobin ”hem” adı verilen demir molekülünden ve ”globin” adı verilen proteinden meydana gelmiştir. Bütün canlıların ”hem” kısmı aynı olmasına karşın ”globin” kısmı farklıdır. AKYUVAR (LÖKOSİTLER): Vücut savunmasında görevli hücrelerdir. Aktif hareket ederler. Çekirdeklidir, kendini yenileyebilirler. Dolaşıma katılan akyuvarlar bölünme yeteneğini kaybeder. Amip gibi şekil değiştirmelerle kılcallardan çıkabilirler. Kemik iliği ve lenf düğümlerinden üretilirler. Vücudun savunmasında görevlidir ve mikrobik hastalıklar karşısında sayısı artar. KAN GRUPLARI: İnsanda 0, A, B ve AB olarak bilinen başlıca dört tip kan grubu tanımlanmıştır. Kan gruplarını belirleyen, kan plazmasındaki antikor ve alyuvarların yüzeyindeki antijen denilen protein ve glikoproteinlerdir. Bu maddeler insandaki belirli genler tarafından oluşturulur.Bu yüzden bir insanın doğumundan ölümüne kadar kan grubu değişmez. Kan grubu A olan bir insanın alyuvarında A antijeni, plazmasında anti-B antikoru bulunur. Kan grubu B olan bir insanın alyuvarında B antijeni, plazmasında anti-A antikoru bulunur. Kan grubu AB olan insanın alyuvarında ise hem A hem B antijenleri bulunur. Plazmasında antikor yoktur. Kan grubu 0 olan insanın alyuvarlarında ise antijen bulunmaz, kan plazmasında anti-A ve anti-B antikoru bulunur. Birçok hayvanda hareket, dolaşım, boşaltım, sindirim gibi olayların gerçekleşmesinde görevlidir. Kas hücreleri iğ (mekik) ve iplik (silindirik) şeklindedir. Kas hücrelerinde miyofibril adı verilen telcikler bulunur. Miyofibriller aktin ve miyozin proteinlerinden meydana gelmiştir. Kas plazmasına sarkoplazma, hücre zarına sarkolemma, endoplazmik retikuluma sarkoplazmik retikulum denir. Bütün omurgalılarda düz, çizgili ve kalp kası olmak üzere üç tip kas dokusu vardır. 1)DÜZ KAS Düz kasların genel özellikleri: *Hücreleri mekik şeklindedir. *Hücrelerinde bir tane çekirdek bulunur. *Düz kasların çalışması yavaştır ve ritmiktir. *İsteğimiz dışı kasılır ve gevşer. *İç organların yapısında bulunur. (Sindirim kanalı, rahim, yutak) *Otonom sinir sistemi kontrolündedir. *Parasempatik ve sempatik olmak üzere iki sinir tarafından kontrol edilir. Bunlardan biri kasılmayı sağlarken diğeri gevşemeyi sağlar. *Renksizdirler. *Uzun süre kasılı kalabilrler. 2)ÇİZGİLİ KAS Çizgili kasların genel özellikleri: *Hücreleri silindir şeklindedir. *Birden fazla çekirdekleri vardır ve hücre zarının altındadır. *Çizgili kasların çalışması hızlıdır. *İsteğimizle kasılır ve gevşer. *Uzun süre kasılı kalamazlar. *İskeletimizde bulunur. *Beynin kontrolünde çalışır. *Çizgili kaslar çabuk kasılır ve çabuk yorulurlar. *Kasılmaları motor sinir kontrolünde olur. *Hücrelerine tek bir sinir gelir, oda kasılmayı sağlar. *En önemli birim kan telidir. *Bantlı yapı gösterir. 3)KALP KASI Kalp kasının genel özellikleri: *Kalp kası düz kas ile çizgili kas arasında bir özellik gösterir. *Çalışması bakımından düz kasa, görünümü bakımından çizgili kasa benzer. *Çalışması otonom sinir sistemi dahilindedir. *Hücreleri silindir şeklinde, paralel dallanma görülür. *Kalp kasının en önemli özelliği, hücrelerin uç uca geldiği yerlerdeki özel yapılardır. Bu yapılar bağlantı yerleridir ve ara diskler adını alır. D)SİNİR DOKU Uyarı alma, iletme ve cevap verme görevi yapar. Sinir hücresine nöron denir. Hücredeki en uzun ve tek olan uzantıya akson, kısa uzantılara da dentrit denir. Sinir hücrelerinde uyarı dentrit, hücre gövdesi ve akson yönündedir. Sinir hücrelerinin bazı aksonlarında miyelin kılıf bulunur. Bunlarda iletim daha hızlıdır. Reseptörlerle alınan uyarılar duyu sinirleriyle beyin ya da omurilikteki merkezi nöronlara iletilir. Merkezde oluşturulan tepki motor nöronlarla efektöre taşınır. Bu iletimde sinir hücreleri birbirine değmez ve uyarılar sinaps denilen boşluklardan nörotransmitter maddelerle aktarılır. Sinir hücrelerinde farklılaşma çok olduğundan, sentrozomlar kaybolur, bu nedenle bölünemezler. Yazar: Doğan Can ÜLKER www.bilgiustam.com/bitkisel-ve-hayvansal...pisi-ve-ozellikleri/

http://www.biyologlar.com/bitkisel-ve-hayvansal-dokularin-yapisi-ve-ozellikleri

Kordon Kanı ve Kök Hücre Tedavileri

Kordon Kanı ve Kök Hücre Tedavileri

ATİ Teknolojisi Nedir? Hizmetleri Nelerdir?ATİ Teknoloji, Türkiye’de hücre ve gen tedavileri alanında kurulmuştur. Hücre ve gen tedavileri alanında dünyadaki gelişmeleri takip etmekte  ve dünya standartlarında ürün ve hizmet sunmayı amaçlamaktadır.Dünyada gelişmekte olan  hücresel tedavi alanında hizmet sunmayı gaye edinen  ülkemizin ilk biyoteknoloji şirketidir. Trabzon Teknoloji Geliştirme Bölgesinde yer alan ATİ Teknoloji Hücre Ve Gen Tedavi Merkezi uluslararası standartlara sahip ilk hücre işleme tesisidir. Orta Doğu’da İsrail’den  sonra ikinci,Türkiye’de ise ilk olan bu tesis kök hücre üretimine başlamıştır. Hücre tedavileri konusunda laboratuvarlarında;  kemik iliği hücresi,  yanıklar için anti-aging hücre,  kıkırdak doku, kanser aşısı gibi çalışmalar da yürütülmektedir. ATİ Teknolojisi Ürünleri Ve Hizmetleri•    Kordon Kanı BankacılığıATİ-Kordon Kanı(KKKH)•    Organ Mühendisliği Ürünleri ATİ-Mezankimal Kök Hücre(MKH)•    Anti-Aging Ürünleri ATİ-Fİbroblast•    Ortopedik Cerrahi Ürünleri ATİ Kondrosit -1 ATİ kondrosit-2•    Kök Hücre Nakil Ürünleri ATİ-DKH(Periferik Kan/ Dolaşan Kan Kaynaklı Kök Hücre) ATİ-KKH(Kemik İliği Kaynaklı Kök Hücre)•    İmmünoterapi Ürünleri ATA 1 ATA 2 ATA 3 ATA 4 ATİ –ASH ATİ-NKH ATİ-GRANÜLOSİTKök Hücrede Devrim Bilim insanları kök hücre çalışmaları sayesinde yakın zamanda birçok tedavisi olmayan hastalıklara çözüm bulunulabileceğini öngörüyor. Kök hücre bir ana hücredir ve insan vücudunda her türlü vücut hücresine dönüşebilir. Bu ana hücre;  kandan, kordon kanından, kemik iliğinden veya embriyodan elde edilebilir. Bu işlemler ATİ Teknoloji Laboratuarlarında uygulanmaktadır. Bu sayede ileride kimsenin kemik iliği naklinde gerekli hücreler için yurtdışına gitmesi gerekmeyecek ve kordon kanı bankacılığı sayesinde kök hücre bankaları oluşturulabilecektir. Kök hücreyi genel bir tanımlama içerisine sokarsak;  görevi tanımlanmamış ana hücre, diyebiliriz. Vücutta en fazla olduğu dönem  anne karnındaki bebeklik çağıdır ve daha sonraki yaşlarda sayısı ve etkinliği azalır.Kök hücreler diğer hücreler için bitmeyen bir kaynak anlamına gelmektedir.Kök  hücreler embriyonik ve yetişkin (erişkin) diye ikiye ayrılır. Embriyo kökenlilerin araştırmalara dâhil edilmesi dinî ve etik kaygılardan dolayı hemen hemen  yasaktır ya da birnebze serbesttir. Embriyonik kök hücre; çoğalma kabiliyetinde, erişkine nazaran daha avantajlı ancak bazı sağlıksal riskler taşıdığı da belirlenmiştir.Kök Hücrenin Tedavi AlanlarıHerkesin kanında kök hücre bulunur  ve her organın kendine ait kök hücresi mevcuttur. İstenildiği zaman alınıp saklanılabilir ve bu kök hücre çoğaltılarak kullanılabilir. Kök hücreler; bağırsak iltihabı, diyabet hastalığı, idrar kesesi, soluk borusu veya bağırsak tedavisinde de kullanılmaya başlanmıştır. Kordon Kanı Nedir? Çocuğumuzun Kordon Kanını Niçin Saklamalıyız? Anneyle rahimdeki bebek arasında bulunan göbek kordonundan doğum sonrasında toplanabilen kana kordon kanı denilir. Bebek doğduktan sonra bebek kordonu kesilir  ve çöpe atılır. Oysa bu kordon içerisinde  bol miktarda kök hücre vardır. Peki kordon kanı neden saklatılmalıdır? Kordon kanında diğer kök hücre kaynaklarına göre daha fazla kök hücre mevcuttur. Ayrıca içerdiği kök hücreler daha işlevsel ve gençtir. Kordon kanı kök hücre nakillerinde alıcı ve verici arasında tam uyumu gerektirmez. Ayrıca kordon kanında bulunan kök hücreler radyasyon gibi çevresel etkenlerden de henüz etkilenmemiştir. Hem kendi çocuğumuzun ileriki yaşamında karşılaşacağı hastalıklara tedbir olarak saklanması tavsiye edilebilir, hem de kök hücre bekleyen diğer hastalara uyum için umut olabilir. Kordon kanı bebek doğar doğmaz ilk 10 dakika içerisinde alınır. Birkaç dakika süren  bu işlem; basit, tehlikesiz ve acı vermeyen  bir işlemdir ve  herhangi bir cerrahi uygulama gerektirmez.Kordon Kanı Hangi Hastalıklar İçin Kullanılabilir? Günümüzde; kalp yetmezliği, omurilik yaralanmaları, Multipl Skleroz (MS)  ve diabet gibi hastalıklarda kullanılan Mezenkimal kök hücreler kordon kanında da bulunmakta olup, laboratuar koşullarında üretimi yapılabilen hücrelerdir. Yaygın olarak; kanser ve anemi başta olmak üzere birçok hastalığın  tedavisinde, kök hücre nakline ihtiyaç duyulan hastalıklarda kullanılmaktadır.Yazar: Meltem Türkhttp://www.bilgiustam.com

http://www.biyologlar.com/kordon-kani-ve-kok-hucre-tedavileri

Kök Hücre

Farklı hücre tiplerine dönüşebilme potansiyeline ve kendisini yenileyebilme gücüne sahip olan hücrelere "kök hücre" deniyor. Vücudumuzdaki kas, cilt, karaciğer hücreleri gibi hücrelerin belli bir hedefi var ve bölündüklerinde yine kendileri gibi bir hücre oluşturuyorlar. Yani karaciğer hücresi bölününce yeni bir karaciğer hücresi oluşuyor. Bundan Farklı olarak, kök hücrelerin bu şekilde belirlenmiş bir görevleri yoktur. Aldıkları sinyale göre farklı hücre türlerine dönüşüyorlar. Bunu kontrol eden unsurlarsa genlerdir. Bir kök hücresinin hangi hücreye dönüşeceğini hücre çekirdeğindeki genler belirlemektedir. Diğer hücreler ölünce veya hasar görünce, kök hücreler hangi hücre türüne ihtiyaç varsa o hücreye dönüşüyorlar. Bu işlem sırasında bazı genler daha aktif hale gelirken, bazıları da baskılanmaktadır. Kendisini yenileme gücüne sahip olan kök hücreler, bir bakıma diğer hücre türleri için tükenmez bir kaynak görevi üstlenmektedirler. İlk olarak 1998 yılında insan embriyosundan kök hücre elde edilip kültürlerde çoğaltılmasından sonra kök hücre araştırmaları hız kazandı. Değişik hücre türlerine dönüşebilme potansiyeli olan kök hücreleri, kontrol edilebildikleri taktirde laboratuvar ortamında istenilen hücre türüne dönüştürülebiliyorlar. Böylece vücutta eskiyen, hastalanan veya ölen hücrelerin veya organların yerini doldurmak üzere laboratuvarda kök hücrelerinden yeni hücreler, hatta yeni bir organ elde edilebilir. Ancak bunu başarabilmek için hücrenin genetik şifresini ve kontrol mekanizmalarını çok iyi bilmek gerekiyor. Kök Hücre nedir? Erkeğin spermi ile kadının yumurtası birleştiğinde, yani döllenme sonrası oluşan hücre (zigot) tek başına tüm organizmayı meydana getirebilecek genetik bilgiye ve güce sahiptir. Vücuttaki tüm hücrelere dönüşebilecek potansiyele sahip olan bu ilk embriyonel hücreye "totipotent" herşeyi yapabilen anlamında hücre denilmektedir. Döllenmeyi izleyen ilk dört ile beş gün içerisinde tek hücreden meydana gelen tüm hücreler aynı güce sahiptir, yani döllenme sonrası ilk dört gün içerisinde oluşan hücreler rahim içerisine yerleştirildiğinde her biri tek başına bir organizma, yani insan oluşturabilecek güçtedirler. Anne karnında ilk dört gün içerisinde eğer herhangi bir nedenle bu hücreler birbirinden ayrılırsa, ayrılan her hücre kendi başına büyüyebilir ve ayrı bir insan meydana gelebilir. Genetik şifreleri aynı olan bu kişiler “tek yumurta ikiz” leridir. Beşinci günden, yani 2-3 hücre bölünmesinden sonra meydana gelen hücreler "blastosit" denilen küresel bir şekil alırlar. Bu kürenin içerisindeki hücreler vücuttaki tüm hücrelere dönüşebilecek potansiyele sahipler; ancak tek başlarına tüm organizmayı oluşturamamaktadırlar. Yani, döllenmeden 6-7 gün sonra meydana gelen hücrelerden herhangi biri alınıp rahime yerleştirilirse bu hücre artık bir insan oluşturamıyor. Beşinci günden sonra oluşan hücreler her hücre türüne dönüşebilecek güce sahipler. Gerekli ortam sağlandığında bu hücreler bilinen yaklaşık 200 hücre türüne dönüşebiliyorlar. Ancak bu hücreler artık tek başına tüm organizmayı oluşturamıyorlar. Bu nedenle bu hücrelere "pluripotent" hücre deniliyor. Hayvanlardan ilk olarak 1981 yılında elde edilen bu tür kök hücreler yaklaşık 15 yıl sonra insanlardan da elde edildi. Hücrelerin bölünme kapasitesini, yani bir bakıma ömrünü belirleyen faktörlerden biri, kromozomların ucunda bulunan ve "telomer" denilen DNA zincirleridir. Bu zincirlerin uzun kalmasını sağlayan ise telomeraz enzimidir. Bir hücrede telomeraz ne kadar aktifse telomer uzunluğu da o kadar korunabiliyor demektir. Telomerler ne kadar uzun olursa hücrelerin bölünme kapasitesi de o kadar fazla olur. Kök hücrelerde de çok aktif telomeraz faaliyeti ve buna bağlı uzun telomer zinciri vardır. Bu nedenle kök hücreler çok uzun sürelerle bölünerek kendilerini kopyalayabiliyorlar. Anne karnındaki organizmanın daha sonraki gelişim aşamalarında hücreler biraz daha özel görevlere sahip oluyor ve erişkin kök hücrelerine dönüşüyorlar. Bu erişkin kök hücreleri de belirli hücre türlerini meydana getiriyor. Örneğin kan kök hücresi kemik iliğinde bulunuyor ve gerektiğinde beyaz kan hücreleri, kırmızı kan hücreleri ve kanın pıhtılaşmasında görev alan trombositlere dönüşüyor. Aynı şekilde deri kök hücreleri de değişik deri hücrelerine dönüşebiliyorlar. Biraz daha özelleşmiş olan bu kök hücrelere "multipotent" (çok yetili) hücre deniliyor. Tüm organizmayı oluşturma gücüne sahip olan veya tüm hücre türlerine dönüşebilen kök hücreler, insan gelişiminin ilk aşamalarında, yani embriyo aşamasında bulunuyor. Ancak biraz daha özelleşmiş kök hücreleri çocuklarda ve hatta erişkinlerde bulunabiliyor. Buna en iyi örnek kemik iliğindeki kan kök hücreleri. Bu hücreler hem çocuk hem de erişkin kemik iliğinde bulunuyorlar. İnsan vücudunda ancak belirli birkaç hücre türüne dönüşebilen erişkin kök hücreleri, laboratuvar koşullarında gerekli ortam ve sinyaller sağlandığında çok daha fazla hücre türüne dönüşebilmektedirler. Örneğin, normal koşullarda sadece kan hücrelerine dönüşen kan kök hücreleri, istenildiğinde sinir hücresine dönüşebiliyorlar. Kök Hücrelerin Kaynağı: Kök hücreler üç kaynaktan elde ediliyor. Bunlardan ilki insan veya hayvan embriyosu. Yani daha anne karnında 5-6 hücre aşamasındaki organizmadan kök hücre elde edilebiliyor. Buna embriyonel kök hücre deniliyor. İnsan embriyonel kök hücresi ilk olarak 1994 yılında elde edildi, 1998 yılındaysa laboratuvarlarda üretilmeye başlandı. Anne karnında büyüyerek fetus haline gelen organizmanın ileride sperm veya yumurta olacak üreme hücreleri de kök hücre kaynağı olarak kullanılabiliyor. Kök hücrelerin diğer bir kaynağıysa erişkinlerde bulunan ve birkaç hücre türüne dönüşebilen "erişkin kök hücre" leridir. Hücrelerin duvarındaki belirli işaretleri tespit ederek, yani bir bakıma bar kodunu okuyarak hangi hücrenin kök hücre, hangisinin farklılaşmış hücre olduğunu anlamak mümkündür. Erişkin kök hücrelere en iyi örnek, her insanda kemik iliğinde bulunan kan kök hücreleridir. Deneysel çalışmalarda her iki kaynaktan elde edilen kök hücreler kullanılmaktadır. Hangi kaynaktan alınırsa alınsın elde edilen kök hücrelerin laboratuvarda çoğaltılmasıyla yeni kök hücre elde edilmesi veya farklı hücre elde edilmesi mümkündür,. ancak embriyodan elde edilen kök hücreler ahlaki açıdan oldukça tartışmalıdır. Bu hücreleri elde etmek için embriyonun hayatına son vermek gerekiyor ve bu da özellikle toplumun tutucu kesiminin tepkisine yol açmaktadır. Telomerler ve Telomeraz: Telomerler, ökaryotik kromozomların uçlarında yer alan ve çok sayıda "TTAGGG" dizi tekrarı içeren heterokromatik yapılar olup kromozom stabilitesinde, gen ekspresyonunda, kromozomal replikasyonda, tümör oluşumunda, yaşlanmada ve hücre bölünmesinde rol aldıkları bilinmektedir. Ökaryotik hücrelerdeki DNA replikasyonunda, kalıp DNA'nın 3' ucunun normal replikasyon mekanizmasıyla kopyalanamamasına "replikasyon sonu problemi" denmektedir ve bunu kompanse edecek moleküler mekanizmaların yokluğunda, her hücre bölünmesinde kromozomal DNA'nın 3' ucunda, yaklaşık 50-200 nükleotidlik kayıp olmakta ve sonuçta "hücresel yaşlanma" gelişmektedir. Telomeraz (telomer terminal transferaz), kromozomal uçlardaki "TTAGGG" tekrarlarının sentezinden sorumlu olan ribonükleoprotein yapıda özel bir DNA polimerazdır. Embriyonik hücreler ve erişkin kök hücrelerinde aktif olan bu enzim, normal somatik hücrelerde saptanmamakta, immortal kanser hücrelerinde ise yeniden aktive olmaktadır. İnsan telomeraz enziminin bilinen 3 komponenti mevcuttur: 1) İnsan telomerazı RNA komponenti (hTR) 2) İnsan telomerazı reverse transkriptazı (hTERT) 3) İnsan telomerazı protein komponenti (TP 1) "hTR"nin, telomer DNA'sına komplementer olan ve 5'-CCCUAAA-3' tekrarlarını içeren 8-30 bazlık bir bölümü sentezde kalıp olarak kullanılmaktadır. Telomerazın katalitik altbirimi olan "hTERT" ise bu diziye komplementer olan "GGTTAG" dizi tekrarlarını sentezlemekte ve "G"den zengin olan 3' ucuna eklemektedir. RNA kalıbının, yeni sentezlenen telomerik dizinin 3'ucuna doğru kaymasıyla, DNA polimeraz bu diziyi kalıp olarak kullanarak karşı komplementer zinciri tamamlar. Telomerazın RNA altbirimine bağlanan "TP1"in, enzimatik aktivitenin regülasyonunda rolü olabileceğini ileri sürmektedir.

http://www.biyologlar.com/kok-hucre

Bitki Anatomisi Sınavında Çıkabilecek Muhtemel Sorular

1-Çimlenmekte olan bitkinin besin gereksinimi kotiledonlarda ya da özel dokularda depolanan besinlerden sağlanır. 2-Kök ve gövdenin büyümesi büyüme noktalarındaki meristamatik dokuların yeni hücrelerin oluşması ve büyüme ve farklılaşması ile olur. 3-Yapraksız ve köksüz yapraksı yapıya tallus denir.Bu tür bitkilere detallafita grubu denir. 4-Tohumlu bir bitki dallanmış eksen içeren bir yapı gösterirse yaprak kök ve gövdeden oluşan yapıya kormus denir.Bu tür bitkiler kormofita grubuna girer. 5-Kök ve gövdenin oluşturduğu başlangıç büyüme genel olarak primer büyüme, bu tip büyüme ile oluşan bitki yapısına da primer bitki yapısı denir. 6-Vaskular kambiyum dışa doğru sekonder floemi, içe doğru sekonder ksilemi oluşturarak kök ve gövdenin çapının artmasına neden olur. Buna ek olarak mantar kambiyumu da fellogende genişleyerek eksenin çevresel bölgesinde gelişir ve peridermi oluşturur. 7-Kök ve gövdeyi oluşturan yapılar dıştan içe doğru epidermis, korteks, iletim demetleri ve özdür. 8-Sekonder çeperde bulunan lignin, süberin, tanen, organik tuz ve diğer maddelerin yapıya katılması hücreye sertlik verir. 9-Çeper maddesi üst üste tabakalar halinde birikir, buna aposisyon büyüme denir. Bu büyüme iki şekilde olur, biri dıştan hücre lümenine doğru sentripetel, diğeri lümenden uzaklaşacak yönde sentrifugal şeklinde olur. 10-Çeperin yüzeysel büyümesinde mikrofibriller birbirinden ayrılır ve oraya yeni maddeler girer, bu büyümeye intususepsiyon denir.Bu tip büyüme sırasında çeperin gevşeyip yeni maddelerin katılaşması oksin, turgor basıncı, protein sentezi ve solunum işbirliği ile düzenlenmekte ve hücre protoplastının etkinliği ile yakından ilgilidir. 11-Basit geçit parankima, kenarlı geçit trakeit ve yarı kenarlı geçit ise trake ve parankima arasında bulunur. 12-Kenarlı geçitlerde geçit zarının orta kısmında kökeni primer olan kalınlaşma olur. Buna torus denir.Torusun etrafındaki ince kalan bölgeye margo denir. 13-İkiden fazla hücrenin bağlandığı köşelerde başlayan boşluk diğer çeper kısımlarına kadar yayılır, bu hücre arası boşluk tipine şizogen boşluk denir. 14-Kimi hücre arası boşluk sisteminde bir veya daha fazla hücrenin grup halinde erimesi ile oluşur, bu tip boşluklara lisigen boşluk denir. 15-Şizogen ve lisigen boşlukların bir arada bulunmasına şizo-lisigen boşluk denir. 16-Bitkileri hayvanlardan ayıran özellik meristemlerinin olmasıdır. 17-Aynı görevi üstlenmek için bir araya gelmiş hücre topluluğuna doku denir. 18-Kök,gövde ve bunların uç kısımlarında bulunan meristem apikal (uç) meristemdir. 19-Monokotillerin internodyumlarının alt kısmında ve yaprak kılıflarında görülen meristem interkalar (ara) meristemdir. 20-Bulunduğu organın ana eksenine paralel seyreden meristem lateral (enine, yanal) meristemdir. 21-Meristemlerin özellikleri: Plazmaları yoğun,boyutları ve vakulleri küçük,ergastik madde yok,nükleusları büyük,protein sentezi yoğun,çeperleri incedir. 22-Apikal hücre kuramı Nageli 1878 tarafından ortaya atıldı. Bu kuram ilkel yapılı bitkiler için kullanılır. 23-Histogen kuramı Hanstein tarafından ortaya atıldı.Bu kuram tohumlu bitkilerin büyüme noktalarının açıklanmasında kullanılır. 24-Tunika korpus kuramı Schmldt in tarafından ortaya atıldı. Bu kuram yapraklı sürgünlere uygulanır. 25-Histogen kuramdan vazgeçilip tunika-korpus kuramı uygulanmasının sebebi: -Periblem ile ploron arasında geçiş zonu belli değil, -Değişik insiyallerden oluşan olgun dokuların önceden belirlenmemiş olması. 26-Vaskular kriptogomlarda çevrelerindeki hücrelerden kolayca ayırt edilebilen bir veya birkaç hücre vardır. Şayet tek hücre varsa tepe hücresi,birden çok hücre varsa tepe insiali denir 27-Gymmosperlerde tepe meristemi hücre guruplarına göre bölünme ihtiva eder. En dışta antiklinal ve periklinal yönde bölünme vardır. 28-Gymnosperlerde 3 tür gruba ayrılır: Cycas, Ginko ve Crypto,Meria-Abies tipi olmak üzere. 29-Cycas tipi gymnosperm 3 tabakadan oluşur.Yüzey meristemi epidermisi oluşturur. Rib meristem öz bölgesini oluşturur, çevresel meristem korteks, kambiyum ve yan tomurcukları oluşturur. 30-Ginko tipi meristemin cycas tipi meristemin özelliklerinden başka kambiyum benzeri geçit zonu vardır. 31-Cryptomerin-Abres tipinde kambiyum benzeri geçit zonu yoktur. 32-Angiospermlerde opuntia ve normal angiosperm tip olmak üzere iki tiptir. 33-Opuntia tipinde yüzey meristemi yerine tunika vardır.Zip çevresel meristem vardır. Kambiyum benzeri geçit zonu vardır. 34-Normal angiosperm tipinde kambiyum benzeri geçit zonu yoktur. 35-Gymnosperlerde kök iki tabakadan oluşur.Tunika-korpus Angiospermlerde kök ucu 3 tabakadan oluşur: Dermotogen, periklem, ploron. Monokotillerde kök ucu 4 tabakadan oluşur: Dermotogen, periklem, ploron ve kaliptra. 36-Bitkinin sürgün ucundan kök ucuna kadar uzanan dokuya parankima dokusu denir. 37-Parankima çeşitleri, asimilasyon, depo, su deposu, iletken doku ve havalandırma parankimalarıdır. 38-Hücre çeperi mantarlaşmamış örtü dokular; Epidermis, stoma, tüyler ve su savaklarıdır. 39-Epidermisin görevleri: -Desteklik sağlar -Terleme yapar -Mekanik koruma sağlar -Su ve kimyasal madde depo eder -hücrede buruşmuş kısımları yeşertir 40-Gölgede ,suda yetişen bitkilerde ve eğrelti otlarında epidermis bulunmaz. 41-Stomalarda üretilen şeker stomanın su emme kuvvetini arttırır ve komşu hücrelerden bekçi hücrelere su girişi olur ve stoma açılır. 42-Akşam stomalardaki şeker nişastaya çevrilir ve stomanın emme kuvveti azalır.Bekçi hücrelerinden komşu hücrelere su ve nişasta çıkar stoma kapanır. 43-Stoma orabanche bitkisinde inaktif halde bulunur.Kökte klorofilsiz ,bazı kara bitkilerinde ve parazitik bitkilerde stoma bulşunmaz. 44-Tüy çeşitleri korunma, savunma, tırmanma, emme, salgı ve emergenslerdir. 45-Kök tüyünü oluşturan epidermis hücrelerine trikoblast denir. 46-Sekonder kalınlaşmayla kök ve gövdede epidermisin yerini alan sekonder orijini koruyucu doku peridermdir. 47-Periderm fellem,fellogen ve fellodermden oluşur. 48-Periderm de gaz alış-verişini sağlayan yapılara lentisel denir. 49-Bitkinin bir yerine dış tesirle bir yaralanma olduğunda yaralanıp ölmekte olan hücreler,saldıkları hormonlarla civarındaki sağlam hücrelere bölünme kabiliyeti kazandırırlar bu olaya yara mantarı veya yara kambiyumu denir. 50-Epidermiste bulunan stomanın altına isabet eden bölgede mantar doku teşekkül edecekken yerine selüloz çeperli parankima hücreleri oluşur bu dokuya komplimenter denir. 51-Destek doku sklerankima ve kollenkima hücrelerinden oluşur. 52-Sklerankima lifler ve taş hücrelerine ayrılır. 53-Lifler meristematik hücrelerden taş hücreleri parankimatik hücrelerinin olgunlaşmasıyla oluşur. 54-Sklerankima yaprağın dik durmasını ve kök kıvrılma yaptığında kırılmamasını sağlar. 55-Sklerankima ve kollenkima dokularının ikisine birden sferom denir. 56-İçeriği büyüklüğü ve şekilleri farklı olan hücrelere idioblast hücreler denir. 57-Dikotiledonlarda sklerankima lifleri yumuşaktır, monokotiledonlarda serttir. 58-Kollenkima hücreleri köşe, levha, boşluk ve annular kollenkima diye ayrılır. 59-Monokotiledonlarda kollenkima bulunmaz, bunlarda sklerankima vardır. 60-Kollenkima hücreleri büyümekte olan genç bitkilerin gövde, yaprak köklerinde, çiçek organlarında ve meyvelerinde bulunur. 61-Köşe kollenkimasında kalınlaşma köşelerde olur Levha kollenkimasında kalınlaşma bir kenardadır (alt-üst) Boşluk kollenkimasında kalınlaşma hücre arası boşluğa bakan kenardadır Annular kollenkimasında kalınlaşma hücre lümeni bir daire yapısındadır. 62-İletim doku elamanları floem ve ksilemdir. 63-Ksilem elamanları trake, trakeit, ksilem sklerankiması ve ksilem parankimasıdır. 64-Floem elamanları elekli boru hücreleri, arkadaş hücreleri, floem sklerankiması ve floem parankimasıdır. 65-Kökte oluşan ksilemlerden ilk oluşan protoksilemdir.Bunun üzerine daha sonra oluşana meta ksılem denir. 66-Ksilemin görevi:köklerden aldığı su ve mineralleri gövde ve yaprağa iletmektir. 67-Floemin görevi:yaprakta oluşan organik maddeleri diğer organlara iletmektir. 68-Ksilem elamanlarından trake,trakeıd ve ksilem ksilem sklerankiması desteklik verir.Ksilem parankiması depo görevi görür. 69-Trake üst üste gelmiş aradaki bölme zarları erimiş bir çok hücrelerden gelişmiş,geniş ve açık borulardır.Bunda perferasyon tablası iletimi sağlar. 70-Trakenin çeper sonlarında bazen de yalnız bir tarafta bir yada birkaç delik içerirler.Delik taşıyan hücre çeper kımına perfarasyon tablası denir. 71-Vaskular farklılaşmanın başlangıcında oluşan dokuya protoksılem denir.Bu dokudan oluşan doku ise metaksilemdir. 72-Gymnospermlerde sadece trakeid bulunmasının sebebi ilkel yapıda olmasıdır. 73-Öz kolunu görevi öz bölgesi ile korteks arasında iletimi sağlamaktır. 74-Çeperlerin yırtılması sonucu parankima hücrelerinin içe doğru girmelerine tilosis denir. 75-Primer floem prokambiyumdan oluşur.Sekonder floem kamiyum üretir. 76-Eğrelti otu ve gymnospermlerde arkadaş hücreleri yoktur.Bunun yerine protein yapısında albuminli hücreler bulunur. 77-Salgı maddelerinin dışarı atılmaması sekresyon dışarı atılmasına ekresyon denir. 78-Dış salgı sistemi hidatot,nektaryumlar,enzim bezleri ve ozmoforlardır. 79-Gutasyon suyun sıvı şekilde hidatottan atılması olayıdır. Nektaryum şekerli öz suyu salıp böcekleri kendine çeker tozlaşmayı sağlar Osmofor bitkilerin koku yaymasını sağlar ,bitkiye çekicilik verir, tozlaşmayı sağlar Enzim bezi böcek kapan bitkilerde sindirimi sağlar 80-Lateks denilen beyaz veya sarımsı renkte oldukça viskos bir sıvı içeren hücre veya birleşmiş hücre serilerine latisifer denir. 81-Protoderm ,epidermisi oluşturur. 82-Temel meristem,öz,öz ışını,korteks’i oluşturur. 83-Kütinizasyon,epidermis hücrelerinin üst çeperine kütin katılması olayıdır.(seluloz+kutın=kutinizasyon) 84-Antogenetik,embriyodan itibaren olan değişim. 85-Filogenetik,eski atadan bugüne kadar olan değişim. 86-İdioblast,bulunduğu dukudaki hücrelerden şekil,içerik ve büyüklük bakımından farklı hücrelere denir. 87-Anostomoz,ağız ağıza yada uç uça gelen hücrelerin çeperlerinin erimesiyle oluşan boşluklar. 88-Kallus,callose denen d-glukozdan yapılmışbir polisakkarit olup iletimi düzenler. 89-Fillatabi,yaprakların gövde üzerinde diziliş tarzını inceleyen bilim dalı. 90-Merkezi silindir,korteksin son tabakası olan endodermisin altında merkeze kadar olan kısım. 91-Perisikl,merkezi silindirin en son dış tabakasını oluşturan tek sıralı hücrelerden oluşmuş yapı. 92-Hadrosentrik,içte ksılem ve dışta halka şeklinde floem olan iletim demeti şekli. 93-Leptosentrik,içte floem dışta ksilem bulunan iletim demeti şekli. 94-Özışınlar,merkezi silindirdeki iletim demetleri arasındaki boşlukları dolduran parankimatik kısımlara denir. 95-Radikula,embriyonun kökü oluşturacak kısmı. 96-Plumula,embriyonun gövdeyi oluşturacak kısmı. 97-Fragmoplast,orta lamel gelişimine bölündükten sonra başlar,başlangıçta ipliksi oluşumlar halindedir.Buna “fragmoplast” denir. 98-Plastite,hücrenin şekil ve boyutuyla değişikliğe uğrayarak zamanla biçimsizleşip farklı şekillerde kalarak hacminin sürekli olarak artması. 99-Elastite,biçimsizleşmeden sonra hücrenin özgül şekil ve boyutuna geri dönmesi. 100-Tilosis,çevrelerindeki parankima hücreleri tarafından trakelerin kapatılması olayına denir. 101-Adventif kök,canlı parankima hücrelerinin bölünmesiyle oluşan köke denir. 102-Trikoblast,kök epidermisinde emici tüy yapıcı epidermis hücrelerine denir. 103-Velamen,monokotiledonlarda çok tabakalı epidermise denir. 104-Caspari şeridi,genç köklerde endodermis hücrelerinin yanal ve ışınsal çeperlerinde ince şerit halinde kalınlaşmalar görülür.Buna”caspari şeridi” denir. 105-Diark,kökte görülen 2 kısılem kollu ışınsal iletim demetine denir. 106-Mikoliza,bitki köklerinin özel mantarlarla oluşturduğu simbiyotik birliğe denir. 107-Kotiledonlar(ilk yapraklar) tohumda ilk gelişen yapraklardır.B esin depo ederler. 108-Bifasiyel yaprak,belirgin bir palizat ve sünger parankiması ayırt edilen yapraklara denir. 109-Unifasiyel yaprak, belirgin bir palizat ve sünger parankiması ayırt edilemeyen yapraklara denir. 110-Demet kını,bazı bitkilerde iletim demetinin etrafında özel kloraplastlı nişasta depo eden bir sıralı hücre topluluğuna denir. 111-Hovstoryum,parazit bitkilerin konak canlıya saldıkları köklere verilen isim. 112-Yan köklerin orjini perisikl , tüylerin orjini epidermistir. 113-Kökten gövdeye geçiş bölgesine “chipolotil” denir. 114-Trakelerde yaralanan yerlere trakenin içine girerek kapatan yapıya “flosis” denir. 115-Çöl bitkilerinin yapraklarında nektaryum bulunur. 116-Hücre çeperinde meydana gelen mantarlaşma süberinleşme sonucudur. 117-Dermotogen deri dokularını veren tabaka 118-Sekonder kalınlaşma ve odun oluşumu gymnospermlerde ve dikotillerde görülür.Monokotıllerde normal kalınlaşma görülmez. 119-Trake hücreleri ölüdür ve liglinleşmiş çeperlidir. 120-Kalburlu borular canlı hücrelerdir ve çeperleri hiçbir zaman liglinleşmez. 121-Epidermal hücreler dışa doğru çıkıntılar yaparak tüyleri meydana getirirler. 122-Tüyler 4’e ayrılır a-koruma tüyleri: Bitkiyi dış etkenlere karşı korur ayrıca güneşten gelen zararlı ışınları yansıtır. b-emme tüyleri: Bunlar kökte bulunur ve topraktaki maddeleri bitkiye alır. c-tutunma tüyleri: Bitkiyi yerden yukarlara çıkarmaya yarar. d-salgı tüyleri: Bu tüyler eterik yağlar salgılarlar. 123-Periderm hücre çeperi mantarlaşmış örtü dokudur.Su kaybını önler, ısı kaybını önler, patojenleri uzaklaştırır. 124-Fellogen üste doğru fellemi aşağı doğru fellodermi oluşturur. 125-Genç hücrelerde turgor desteklik sağlar. 126-Kollenkima hücreleri canlıdır, Sklerankima hücreleri ölüdür. Kollenkima hücreleri suludur, Sklerankima hücreleri susuzdur. Kollenkima hücrelerinde kloroplast var, Sklerankima hücrelerinde yoktur. 127-Bitki hücrelerinin hayvan hücrelerinden farkı seliloz çeper olmasıdır. 128-Sekonder çeperde meydana gelen odacıklara geçit denir. 129-Basit geçitler taş hücreleri ve parankimada bulunur. 130-Kenarlı geçitler trakeitlerde bulunur. 131-Yarı kenarlı geçitler trake ile parankima arasında bulunur. 132-Plasmodesma ve geçitler hücre arası madde alış-verişini sağlarlar. 133-Süt borularının görevi:su tutma kapasitesine sahiptir,minimum seviyede taşımayı sağlar, yaraların onarılması için zemin hazırlar.

http://www.biyologlar.com/bitki-anatomisi-sinavinda-cikabilecek-muhtemel-sorular

Biyolojideki Son Gelişmeler

Biyolojik çeşitlilik Dünya üzerinde yaşamın sürdürülmesine olanak tanıyan sağlıklı ve dengeli bir küresel ortamın temelini oluşturur. Bir biyolojik gelişme, biyolojinin tüm çeşitliliğini içerisinde bulundurur. Bu gelişmeler aşağıda ana başlıkları ile anlatılmaktadır. EVCİLLEŞTİRME SÜRECİ, KÖPEĞİ İNSANLAŞTIRDI Köpek, insana şempanzeden daha benziyor. Bilim adamları köpeğin ilk olarak hangi tarihte ve nerede evcilleştiğini tartışa dursun, son araştırmalar köpeğin iyice insanlaştığı gösterdi. Evcilleşen köpek artık doğuştan mesajları kullanma yetisini geliştirdi. İnsanoğlu yalnızca kendi davranışlarını kavrayan saldırgan olmayan ve sadık türleri evcilleştirerek köpekler arasında doğal ayıklama gerçekleştirdi. Giderek bakıcılık görevi bile üstlenen köpek, sahibinin kan şekeri düştüğünde onu daha dikkatli izliyor ve hasta düzelene kadar yanından ayrılmıyor. 39 kromozom çiftine sahip köpeğin hızlı üreme yetisi sayesinde insanoğlu köpeği çok kısa süre içinde istediği gibi yetiştirebilmişti. Köpeğin insanla yakınlaşması evrim açısından büyük bir başarıyla sonuçlanmıştır. Köpeklerin neden bu şekilde davrandıkları bilimsel açıdan henüz kesin olarak kanıtlanmamışsa da bilim adamları düşük kan seviyesi sırasında salgılanan tipik ter kokusunun köpekler tarafından algılandığını tahmin ediyorlar. İNSAN ASLINDA BİR BUKALEMUN MU? Bazı insanların koyu kazı insanlarınsa açık rengine sahip olmasının sırrı nihayet çözüldü. Dünyanın çeşitli yerlerinde yaşayan insanların deri renkleri güneşin ultraviyole ışınlarının soğurulması ve yansıtılması arasında çok hassas bir dengeye göre ayarlanan hayati bir mekanizma var. Deri rengi biyolojik bir gereksinim. Kuzey ülkelerinde yaşayan insanlar sarışın, çünkü sarı saçlar daha fazla ışığın kafatasından içeri girmesini sağlıyor. Ekvatora doğru inildikçe deri rengi koyulaşıyor, çünkü siyah saç ve ten güneş ışığının gereğinden fazla bedenimize girmesini engelliyor. Ten rengi bedenimizde hayati bir madde olan folik asitin yıkılmasını önlemek için koyulaştı. Folik asit bedenimizde sağlam kalarak gelişmekte olan Embriyo sinirlerinin gelişmesinde çok önemli rol oynar. Hem biyolojik olarak yaşamsal hem de UV’ye karşı duyarlı. Bir diğer önemli madde olan Melanin, UV ışığını soğurur ve yayar. Deriyi renklendiren pigmentler ile UV arasında bir bağlantı var. Melanin güneş yanığından korumanın yanı sıra folik asitin bozulmasını da önlüyor. BEBEK OLUŞUMUNUN BÜTÜN SIRLARI AYDINLANDI Bilim adamları bir bebeğin büyümesini gün ve gün izleyerek bütün gelişme aşamalarını saptadı ve Embriyonun gelişiminde bilinmeyen sırları da ortaya çıkardı. İşte ilk 9 ay hakkında yeni öğrenilen bilgiler. Bebek ana gelişimini ilk üç ay içinde tamamlıyor. Kalp,akciğer ve beyin gibi hayati organların oluşumunu tamamlıyor. İnsan dahil bütün canlıların oluşumunda aynı biyolojik tornavidalar, alet-edevatlar kullanılıyor. Bebeğin sağlığı can alıcı noktalar annenin aldığı hava, içtiği su, aldığı ilaçlar, yediği yemeğin kalitesi, taşıdığı hastalıklar ve geçirdiği zorluklar. Ayrıca çevredeki zehirleyici maddeler. Bütün bunlar bebeğin hastalıklardan arınmış olması için çok önemlidir. Hamileliğin dördüncü günü İlk göze çarpan değişim hamileliğin dördüncü gününde gerçekleşir. Morula adlı 32 hücreli bir parça içi sıvıyla dolu bir çekirdek etrafına birbirinden farklı iki tabakanın oluşmasını sağlar. Blastosist denilen bu küre kütle rahminin duvarına yuva yapar kısa bir süre sonraysa hücrelerin dış tabakası plasenta ve amniyon kesesine dönüşürken iç tabakada Embriyoyu oluşturur. 1. Hafta: Döllenmeden birkaç saat sonra oluşan zigot bir yaşam boyu sürecek olan hücre bölünmelerinin ilkine başlar. Bir hafta sonra hücrelerden oluşan bir küme, kendini rahim duvarına bağlar. 23. Gün: İlk gelişen, kendi üzerinde katlanarak Embriyonun sırtında bir tüp oluşturan sinir sistemi olur. 32. Gün: Gelincikten daha büyük olmayan Embriyodan kalp, gözler ve kas damarları oluşur. Beyin, hücrelerin dizildiği oyuklardan oluşan bir labirenti andırırken gelişen kollar ve bacaklar yüzgeçlere benzer. 40. Gün: Bu dönemde Embriyo; bir fiil, domuz veya tavuk Embriyolarından farklı gözükmez hepsinde kuyruk, sarı kese ve temel solunum organları bulunur. 42. Gün: Embriyo artık koku duyusunu geliştirmeye başlar eller birbirinden kaba şekilde ayrılmış parmaklar belirginleşir. Boyutları Embriyo,ilk 3 aylık dönemde hızla gelişir. 12. Haftayla birlikte minyatür boyutlarda da olsa bir çok vücut sistemi bulunur. 52. Gün: Üzüm tanesinden çok büyük olmayan fetüs, artık burun deliklerine ve pigment leşmiş gözlere sahiptir. Gelecek 4 ay boyunca göre sinirleri oluşacağından fetüs, görme duyusunu kullanamayacaktır. 54. Gün: 2 ay sonunda yapılmasının büyük bir kısmını tamamlamıştır. Fetüsün tüm organları yerlerini almış gelişmeyi beklemeye başlar. Beyin hala herhangi bir bilişsel fonksiyona sahip olmayan hücre topluluklarından ibaret olan beyin, yeni oluşan kafatası içinde yer alır. Kalp: Fetal kalp bir yetişkin kalbin yalnızca %20 si oranında kan pompalasa da, kapakçıklara, 4 farklı odacığa ve şanta sahiptir. Mide: Annenin besin zengini kanı sayesinde mide doğumdan önce sindirim gerçekleştiremez. Göbek bağı: Başlangıçta bir saç teli boyutlarında olan göbek bağı Embriyoyu annenin plasentasına bağlamak için genişler ve gelişen bağırsakları içine alır. Yemek borusu: 4 hafta sonunda boru, nefes alma organlarından ayrılır ve sonunda da ağzı mideye bağlar. Böbrekler: artık böbrekler maddeleri kandan ayırmaya başlar 4. Haftadan itibaren tomurcuklanmaya başlayan akciğerler, ufak tüplere dallanmaya doğumdan sonra bile devam eder. Omurlar: bir kolyedeki inciler gibi omurgaya ait bu bölümler, daha sonra beyni vücudun geri kalan kısmına bağlayacak olan sinirlerle birbirlerine bağlanırlar. Karaciğer: doğuma kadar kırmızı ve beyaz kan hücreleri pompalayan karaciğer doğumla birlikte gerçek işlevine kavuşur. 84. Gün: hala plasenta içinde korunan fetüste küçük bir göğüs kafesi ve gözler ve kulaklar bulunur. Fetüs artık parmaklarını bile emmeye başlar. 7. Ay: İçeride ve dışarıda gelişim neredeyse tamamlanmıştır. Tırnaklar görünür ve beyin vücut sıcaklığını, ritmik solunumu ve böbreklere ait gerilmeleri kontrol etmeye başlar. 8 Ay: Depolanmış olan yağ, fetüsü dış ortamdan ayırır ve enerji kaynağı görevi görür. Giderek azalan alan, fetüsün ellerini ve ayaklarını gövdesine doğru çekmesine neden olur. 9 Ay: Bebek artık, spiral CT tarayıcısına sokulan annenin doğum kanalından çıkarılır. ÇOCUĞUNUZ KIZ MI OLSUN ERKEK Mİ? Bebeğin cinsiyetini anne mi yoksa baba mı belirliyor? Bilim adamları hangi koşulların çocuğun cinsiyetinde baskın rol oynadığı konusunda çeşitli teoriler ortaya attı. Birçoğumuz çocukların cinsiyetinin şans işi olduğunu düşünürüz. Kız veya erkek mi olacağı eşit olasılıklarla karar verilen rastlantısal bir işlemdir. Bilim adamları ise doğanın, sadece yazı tura atmadığına inanıyor. Bilim adamlarını buna inanmaya iten birçok olay var. • Araştırma sonuçları, doğan erkek sayısının kadınlardan biraz daha fazla olduğunu gösteriyor. • Her 100 kıza karşılık 106 erkek Bunun yanında daha ilginç bulgularda söz konusu. • Başkanlar ve lordlar gibi yüksek konumdaki erkeklerin erkek. • Dalgıç test pilotları ve marangozlarınsa kız çocuğa sahip olma eğilimleri daha fazla. • Mevsim normallerinin üzerindeki sıcaklarda daha fazla erkek dünyaya geliyor. • Yaşlı erkeklerin ve baskın altındakilerin kızları oluyor. • Her savaş döneminde ve sonrasında ise etrafta düzinelerce erkek çocuk dolaşıyor. Tüm bu sonuçlar; erkeklerin bazı durumlarda erkek çocuk sahibi olama olasılıklarının daha fazla olduğunu gösteriyor. Bu yıl yapılan araştırma ise günde 20 den fazla sigara içen ebeveynlerin oğul sahibi olma olasılıklarının %45, hiç sigara içmeyenlerin ise %45 olduğunu belirlediler. Bilim adamları; ebeveynler farkında olmadan çocuklarının cinsiyetini belirleyebilir mi? Sorusu hala yanıtını arıyor. ZEKADA BALIK TEORİSİ Aklımızı deniz kenarında bulmuşuz! Bilim adamları insanoğlu zekasının gizini buldu: balık, şempanze beyinli atalarımız ıstakoz, midye, karides ve diğer deniz ürünlerini tercih etmelerinden ötürü, şimdi dünyayı yöneten akıllı yaratıklara dönüşebildik. Bu şaşırtıcı fikir, sinir bilimcilerini, beslenme uzmanlarının , antropologların ve arkeologların katıldığı “insanın ileri zekasının kökenleri” konulu bir konferansta dile getirildi.Toronto üniversitesinden prof. Stehen Cunnane, “İnsan beynindeki evrimin gerçek nedeni, deniz ürünleriyle beslenmesidir” diyor. Bu “Balık teorisi”, balık ve balık ürünleri tüketmenin günümüz hastalıklarının tedavisine yardımcı olduğunu, öne süren çalışmalarda evrimsel destek sağlıyor. GÜNEŞ IŞIĞI GİZLİ BİR KANSER ÖNLEYİCİSİ Mİ? Bildiğimiz ve bilimin sıkça önümüze koyduğu bir gerçek: Aşırı güneş ışınları cilt kanserine yol açıyor. Ama şimdi yeni ve aykırı bir keşfin daha kapısı aralanıyor: Güneş ışığı aslında diğer kanserlere karşı koruyucu özellik taşıyor. D vitamini çeşitli kanserlerin riskini azaltıyor mu? Bu aslında yeni fikir değil 22 yıl önce , iki salgın hastalıklar araştırmacısı ( epidemiyolog ) güneş ışılarına maruz kalan cildin ürettiği D vitamini, bir şekilde kötü huylu hücrelerin büyümesini engellediği görüşünü orta atmıştır. Bu görüşlerini çeşitli bulgu ve bilgilerle destekledi. Örneğin: kutuplara daha yakın ve az güneş alan bölgelerde yaşayan insanlar daha az miktarda D vitamini ürettikleri için tümörlere karşı daha açık ve hassas olabiliyorlar. D vitamini ve güneş ışığı eksikliğinin kansere neden olduğu hipotezi tartışmalı ve kesin kanıtlanmamış olmasına rağmen, bazı araştırmacılar D vitamini kansere karşı olası çare olarak inceliyor. YAPAY KAS GELİŞTİRİLDİ Japon araştırmacılar gerçek kas bileşkelerinden yapay kas geliştirdiler. Kabuklu deniz ürünlerinin kaslarından iki proteini alan araştırmacılar bunları iki farklı jel yığınına dönüştürdüler. Araştırmacılar yeniden oluşturulan kasın yapay kol ve bacaklarda kullanılabileceğine, bedenin bağışıklık sisteminin insan kasından oluşturulan protezleri kabul edebileceğine dikkat çekiyorlar. BİYOLOJİK RİTMİ RETİNA BELİRLİYOR Organizmamız gözdeki hücreler sayesinde günlük tempoya ayak uydurabiliyor. Bu duyarlılığın kökeniyle ilgili önemli bilgiler elde edildi Işığa duyarlı ve biyolojik ritimlerimizi doğrudan etkileyebilecek yeni bir hücre sınıfı belirlendi. Görme hücrelerinde bağımsız olacak bu hücreler, beynin biyolojik saatine ışık bilgisi gönderilmesinde temel aracı olarak görülen pigment niteliğindeki melanopsini üretiyor. Retinada ilk kez gözlenen bu sinir hücreleri gündüz-gece değişimi hakkında organizmayı uyarıyor NEDEN BAZILARIMIZ DAHA FAZLA YİYOR? Bilim adamları metabolizmayı ve iştahı düzenleyen 250 gen ve en az 40 nörokimyasal madde belirledi. Ancak sosyal çevrede en az biyolojik belirleyiciler kadar güçlü. Bilim adamları, bu acımasızca hastalığı inceleyerek iştahın karmaşık biyolojisini anlayabilir. Araştırmacılar bu hastalığa bağlı genetik anormalliklerin iştahı tam olarak nasıl ateşlediği belirlemeye çalışıyor. Bu başarılırsa 20 bin Amerikalı tedavi edilmekle kakmayacak aynı zamanda neden bazılarımız diğerlerinden daha fazla yediği de anlaşılacak. ÜLKEMİZDE 146 KUŞ TÜRÜ YOK OLMA TEHDİDİ ALTINDA 9 bin kuştan 426’ sı ( %4,7) Anadolu’da yaşıyor. İnsanlığın ortak hazinesi ve mirası olarak korumakla görevli olduğumuz bu kuşlardan 146 türü dünya çapında tehlike altında. Bunların nüfusları ülkemizde de tehlike altında. Tepeli pelikan, küçük karabatak, yaz ördeği, pas baş, dikkuyruk, kara akbaba, şah kartal, küçük kerkenez, huş tavuğu, toy ve boz kiraz kuşu, ülkemizde ürüyebilen ender türlerden. Türkiye’de uluslar arası karakterde 100’den fazla önemli kuş alanı var ve bu sayı Türkiye’yi dünyanın önemli kuş ülkelerinden biri kılıyor. Soyu tehlike türlerden; küçük sakarca kazı, sibirya kazı, ak kuyruklu kartal bozkır delicesi, büyük orman kartalı, bıldırcın, kara kanatlı bataklık kırlangıcı, sürmeli kız kuşu büyük su çulluğu gibi kuşlar sadece bunlardan bazıları dır. Türkiye’de pek çok kuş türü çeşitli tehlikelerle karşı karşıya bulunduğuna hiç şüphe yoktur. Bu tehlikelerden bazıları; • Çeşitli nedenlerle insanlar tarafından izlenme ve yoğun av baskısı, • Turizm gelişmesi sonucunda kuşların doğal yaşam alanlarının daraltması, • Bitki koruma ilaçları ile evrensel ve sanayi artıklarının çevreye verdiği zarar, • Kuluçka, beslenme, geceleme, dinlenme veya kışlama alanlarının tahrip edilmesi • Sulak alanların kurutulması, • Tarımın yoğunlaşması, • Ormanların, meraların . çayırların yok edilmesi, • Yüksek gerim hattı ile yol yapımı veya trafiğin verdiği zarar, • Yoğun ve bölgesel sanayileşme ile belli bölgelerdeki canlı varlıkların yok oluşu. Kuşların, biyolojik bir varlık olarak en az insanlar kadar yaşama hakkı ve her türün biyolojik denge içinde önemli yeri ve görevi vardır. BOŞANMA VE AYRILIKLARIN SUÇLUSU BULUNDU: HORMONLARIMIZ Uzmanlar evliliklerin başarılı olması ya da başarısızlığa uğramasının biyolojik ve psikolojik nedenlerini araştırdı. Bu araştırmanın sonuçlarında da tartışmanın ardından yükselen hormon oranlarının başında çok önemli bir rol oynadığını belirlediler. Bu hormonlar ise stresle bağlantılı olanlardır. Gözlemler, stres yaratan bir olaya yanıt olarak beyindeki hipofizin ACTH adlı bir hormonu serbest bıraktığını bununda böbrek üstü bezleri aracılığıyla kortizol salgıladığını ortaya koydu. İNSAN OLMA TARİHİNDE YENİ BİR SAV Yeni bir araştırmaya göre konuşmamızı sağlayan dil genine olsa olsa 200 bin yıldır sahibiz. Şimdi ‘Dil geni’ olarak nitelendirdiğimiz genin değişimine (mutasyon) uğramasıyla konuşma yetisi kazandık. Bu mutasyonla birlikte çağdaş insan tüm dünyaya yayıldı. İri maymunlar ise dil genlerinde ‘vida ve somunlardan’ yoksun oldukları için bizler gibi konuşamıyorlar. YAPAY SİNİR HÜCRELERİNE MERHABA Amerikalı nörobiyolog Theodor Berger hastalıklı beyin hücrelerinin görevini yerine getirebilecek protezler üzerinde çalışılıyor. Bu önemli gelişmedeki anahtar rolü tıpkı sinir hücreleri gibi davranan ‘yapay beyin hücresi’ elektronik çipler üstleniyor. Beyinle ilişki kurarak öğrenen çipler sağırların duymasını sağlayacak, felçlilere hareket olanağı verilecek. İNSAN GELİŞİMİNDEKİ EN ÖNEMLİ ETKEN BESLENME İnsan olmamız ve bugüne ulaşmamızı , beslenmenin yüzyıllar içinde değişimi sağladı. Ancak bugünkü sağlık sorunlarımızın kaynağında da beslenme biçimimiz var. Çünkü aldığımız kadar enerjiyi harcayamıyoruz. Enerji alımı ve tüketimi arasındaki dengesizlik, hastalıkların kaynağı. Atalarımızın besinlerden aldığı enerjiyi ve beslenmenin kalitesini artırmaya yönelik gelişmeleri insanlığın en çok evrim geçirmesinde ve diğer primatlardan ayrılmasında ana özelliklerinden biri olmuştur. İki ayak üzerinde yürümemiz ve beyinlerimizin büyüklüğü bizi diğer insanlardan hızla ayırdı. Beyinlerimizin bir enerji oburu, dinlenirken yetişkin bir insanın beyni, vücut enerjisinin %20 ile %25’ini alır. Bu oran insan olmayan primatlarda %8 ile %10’dur. HASTALIKTAN ARINMIŞ İLK BEBEK DOĞDU Erken yaşta Alzheimera yakalanan anneye Alzheimer’den arınmış bebek doğurtuldu. Annenin Alzheimerli yumurtası çöpe atılarak sağlıklı yumurta döllendirildi. Böylece yeni bir tartışma başladı. Uzmanlar artık yumurtalarda Alzheimer hastalığına neden olan hatalı genleri belirleyebiliyorlar. Böylece hastalığı taşıyan annelerin çocuklarına hastalıklı genleri aktarması engelleniyor. O HALA YAŞIYORDU DOLLY 6 YAŞINDA VE ŞİMDİ DONDURULDU Dolly’nin doğumuyla beklenmedik bir sürpriz yaşanmıştı. İnsanlık 6 yıl önce bugüne kadar alışık olduğumuz doğal bir doğum değildi. Gerçekleşen alıştığımız sperm ile yumurtanın döllenmesi sonucu her doğanın tamamen farklı özelliklere sahip olmasıydı. Ancak bu defa var olan bir canlının genetik ve biyolojik olarak “tıpkı benzerleri yaratılmıştı” buna “klonlama” dendi veya Türkçesiyle “kopyalama” işte dünyanın ilk kopya canlısı 6 yıldır yaşıyor. Bazı sorunlar olsa bile. Dolly ile birlikte insan kopyalamanın da kapısı aralandı. Ancak bu fikirden ve gelişmeden insanlık korktu. Kopya insanlar belki de bu korku nedeniyle henüz ortada yok. Dolly’yi yaratan “büyük deney” belki henüz kopya insanı yaratamadı ama onlarca yeni kapı açtı. Bilim adamları Dolly’yi şimdi dondurdu çünkü ciğerlerinde meydana gelen rahatsızlıktan dolayı öldüğü sanılan fakat dondurulmuş olduğu bilinmektedir. ZEKAYI KADINLARA BORÇLUYUZ İnsan zekasında kadın parmağı ortaya çıktı. Erkeklerin pek hoşuna gitmese de insan soyunun zeki olmasında kadınların önemli payı var. Eski çağlarda dişi soydaşlarımız eş seçiminde güçlü kuvvetli ve pazılı erkekler yerine, zeka kıvılcımları ile parıldayan gözleri tercih edince insanoğlunun zekası gelişti. Ne kadar akıllıca! Özellikle de erkekler, bu tavırlarından ötürü kadınlara çok şey borçlu. Çünkü, eski kadınlar göz kamaştıran kaslara vurulmuş olsalardı günümüzde erkekler bu özellikleriyle şimdi Afrika da ki goril ve şempanzelerle boy ölçüyor olacaklardı. SAKAT DOĞUM ARTIŞI, YOK OLUŞUN İŞARETLERİ Yeni bir teori kanıtlandı. Bir tür (canlı) yok olamaya ne kadar yakınsa, o türdeki asimetrik canlıların sayısı o derece de artıyor. Yani çarpık ya da sakat bacaklılar hızla çoğalıyor. Daha kısa kanat, sakat bacaklar hayatlarının kısalığı ve yok olma tehlikesinin belirtileri. Böylece tükenme tehlikesi ile karşı karşıya olan türler bu yöntemlerle hızla belirlenecek. UZAYDA GALİBA HAYAT VAR Bilim insanların yıllardır sordukları Dünyaya uzaydan mikrop mu yağıyor ? yaşamın ilk tohumları kuyruklu yıldızlardan mı atıldı? Uzayda hayat var mı? Biçimindeki sorulara artık rahatça evet olabilir yanıtı veriliyor. Uzaya gönderilen bazı bakteriler, uzay soğuğunda günlerce canlı kalabildiler. Son araştırmalar bakteri sporlarının uzayda binlerce yıl yaşayabildiklerini gösteriyor ve yaşamı başlatan temel taşlar, çok zor koşullar altında bile kendiliğinden gelişiyor. Uzay bakterileri ve bunların dünyamıza saldırıları, şimdiye dek sadece felaket filmlerinde görülüyordu. Ancak bilim adamlarına göre, artık uzaydan gelebilecek bir salgını hayal olmaktan çıktı. YAŞAMIN TADI “Yaşamın tatlı ve acı duygularını”, dilimizdeki tat hücrelerine girip çıkan bir çift proteine borçluyuz. Bu tat algılayıcılarını ortaya çıkaran buluşun, besinlerin tatları üzerinde kontrolümüzü güçlendirmesi bekleniyor. Araştırmacılar ayrıca beslenme biçimi konusundaki seçimlerin genetik temellerini de bu yolla aydınlatabilmeyi umuyorlar. Biyologlara göre bazı insanlar, bünyemize uygun bir beslenme için anahtar olmak üzere bir tat duyusu oluşturduk. “Tatlı şeker anlamına geliyor ve bu da enerjiyi sağlıyordu; demek ki iyi bir şeydi. Buna karşılık aşırı acı, zehir demekti ve kötüydü.” İlk araştırmacı da, tat algılayıcıları saptayabilmek için, dilimizdeki tat tepeciklerinde var olan ancak dilin bunları çevreleyen bölgelerinde bulunmayan RNA’ları aramaya başladılar. Sonunda tat algılama işlevi için gerekli donanıma sahip görünen ve TR1 diye adlandırdıkları bir protein üreten bir gen bulmayı başardılar. Sonuç olarak yiyeceklerin içindeki acı tadı yok etmek için kullanılan, tuz şeker ve yağa veda edilebilir. Artık tek bir madde ile yiyecek ve ilaçlardaki acılık giderilebilecek. GERİ DÖNÜŞÜMLÜ BİYOLOJİK KUMAŞ Amerikan Cargill Dow ve Unifi firması yüze yüz doğal olan bir biyoteknoloji dokuması üretti. “Ingeo” olarak adlandırılan kumaş türü, hammaddesi tahıla dayanan bir plastikten elde ediliyor. Üretici firmalara göre Ingeo doğal dokumaların tüm olumlu yönleri ile birlikte sentetik ipliklerin kalitesine de sahip ve kullanım alanları giyimden, mefruşat ve otomobil sanayine kadar uzanmakta. Ingeo üretiminde tahıllarda fotosentez sırasında açığa çıkan karbondan yararlanılmakta. Karbon ise mesela mısırda nişasta olarak depolanıyor ve doğal şekere dönüştürülebilmekte. Basit yalıtım ve fermantasyon yöntemi sayesinde ise doğal şeker ayrıştırılarak polimer üretiminde kullanılmakta. DÜNYANIN EN KÜÇÜK BİYOLOJİK BİLGİSAYAR MODELİ Araştırmacılar tarafından geliştirilen biyolojik bilgisayar; DNA ile işlediği gibi enerji ihtiyacını da aynı kaynaktan karşılıyor. DNA bilgisayarların öncüleri enerji kaynağı olarak ATP molekülünden yaralanıyordu. DNA molekülleri ve enzimlerinden oluşan bir bilgisayar üretmişti. Ancak yeni modelde, kalıtım, veri girişini işlediği gibi işlemcinin enerji ihtiyacını da karşılamakta. Ayrı ayrı DNA molekülleri her işlem adımında birbirine uygun olarak input ve yazılım molekülü olarak ikişer iki şer birleşiyorlar. Bili adamlarının açıklamalarına göre biyolojik bilgisayar işlemleri buna rağmen %99.9’luk doğruluk payıyla tamamlamakta. DNA bilgisayarları o kadar küçük ki aynı anda 3 bilyon bilgisayarı yalnızca bir mikrolitre sıvıya yerleştirmek mümkün. 3 bilyon bilgisayarın ise bir saniyede 66 milyar işlem yapacak kapasitede olduğu bildirildi. HERKESİN YAŞAM TANIMI FARKLI “YAŞAYAN” la “yaşam”ı karıştırmamak gerekiyor. Biyoloji yaşayan varlık özerk bir biçimde üreyebilip evrim geçirebilen bütün tanımıyla yetinse de, “yaşam” farklı şekillerde tanımlanan, bilimsel olmaktan çok felsefi bir kavram. Dünya üzerinde yaşamın ortaya çıkışıyla ilgili bir teori, canlının proteinlerini oluşturan aminoasitlerin meteor yağmuruyla uzaydan dünyaya taşındığını varsayıyorlar. Araştırmacılar da kısa bir süre önce, yıldızlar arası boşluktaki koşullara benzer bir ortamda aminoasitler oluşabildiler. ŞARBON AŞISI ISPANAKLA İYİLEŞTİRİLECEK AMERİKAN Mikrobiyoloji Birliğinin biyolojik silahlar konferansında konuşan bilim adamları, ıspanağın içinde bulunan bir maddeyle şarbon aşısının daha etkili kılınabileceğini bildirdiler. Önemli yan etkileri bulunan halihazırdaki şarbon aşısı Amerika’da sadece askerlere uygulanmakta. Oysa Amerika’da günden güne büyüyen biyolojik silah korkusu daha etkili bir şarbon aşısı ihtiyacını doğurdu. Halen üretilmekte olan şarbon aşısında kullanılan, etkisi azaltılmış şarbon virüsü kas ağrıları, ateş ve baş ağrısı gibi rahatsızlıklara sebep veriyor. Thomas-Jefferson Üniversitesi’nden Alexander Karasev, şimdi ıspanak içerikli yeni bir aşı türü geliştirdi. DİĞER ÖNEMLİ GELİŞMELER Paleontoloji : 1. 90 Santim boyunda kolları, ayakları ve kuyruğu tüylerle kaplı modern kuşlara benzer bir dinazor fosili bulundu. 2. 56 Milyon yaşında olduğu tahmin edilen en yaşlı primatların iskeleti bulundu. 3. Nijer’de 110 milyon yaşında 60 santim boyundaki bir timsaha ait olduğu sanılan bir kafatası bulundu. Uzay Biyolojisi : 1. Kara maddenin içinde görülmeyen galaksiler keşfedildi. 2. Kömür gibi kara kuyruklu yıldız bulundu. 3. Evrenin renginin pembemsi bej olduğu anlaşıldı. Ancak bu tonun yıldızlarla yaşlanıp öldükçe kırmızıya dönüşebileceği ileri sürülüyor. 4. Güneş sistemi süper nova kırla dolu bölgelerde geçerken dünyanın yeni bir buz çağına girebileceğini söylüyor. 5. Dünyanın orta kısımlarından kilo aldığı tespit edildi. Bunun nedeni 1998 yılından sonra kütle çekimi alanının kutuplarda zayıflaması, ekvator bölgesinde kuvvetlenmesidir. 6. Kara deliklerin varlığı somut verilerle kanıtlandı. Embriyoloji : 1. Çocukların suçiçeği hastalığına karşı aşılanmaları yetişkin evrelerinde zonaya yakalanma olasılığını arttırılıyor. 2. Erken yaşta ortaya çıkan alzheimer hastalığının geni tespit edildi. Bu geni taşıyanlara uygulanan bir teknik ile DNA’ları bu genden arındırılıyor. Bu uygulama, hastalıklı genlerden arındırma konusunun tıp etiği açısından yeniden tartışmaya açılmasına neden oldu. 3. Yumurtalık kanserine yakalanan kadınlara sağlıklı çocuk sahibi olma yolu açıldı. Kanser tedavisine başlamadan alınıp dondurulan yumurtalık, hasta iyileştikten sonra yeniden nakil yapılabilecek. Fareler üzerinde denen teknik başarılı sonuç verdi. 4. Yaygın olarak kullanılan ağrı kesiciler, kırık kemiklerin kaynamasını geciktiriyor ya da engelliyor. 5. Tüp bebek uygulaması doğan bebekler açısından sanıldığından daha riskli olabilir. Çevre (Ekoloji) : 1. Yok olma tehlikesiyle karşı karşıya kalan türlerin sayısı artıyor. 2. Tatlı suları bir takım kimyasal maddeleri tespit eden yeni yöntemler geliştirildi. 3. Balinaların neslinin giderek tükendiği kesinleşti. Genetik : 1. Nükleer santrallerden veya bomba denemelerinden yayılan yüksek radyasyon DNA’yı nesiller boyu etkileyebiliyor. 2. Çocuk felci virüsünün sıfırdan üretilebileceği kesinleşti. Bu keşif biyoterör endişelerini körüklüyor. ULUSAL BİYOLOJİ KONGRESİ BİLDİRGESİ XVI. Ulusal Biyoloji Kongresi’nde şu görüşler kamuya açıklandı: 1. Avrupa birliği uyum sürecinde biyolojik araştırmaların planlanması, desteklenmesi ve yürütülmesi aşamalarında üniversitelerimiz biyoloji bölümleri akademik programların Avrupa Birliği ülkelerindeki üniversitelerde okutulan programlar ile AB akreditasyon standartlarına uygun hale gelmeli. 2. Biyologların iş hayatındaki yetki ve sorumlulukları en kısa sürede belirlenmeli ve ‘Türkiye Biyologlar Birliği Yasası’ çıkartılmalı. 3. Biyoloji bölümünden mezun olan biyologlar eğitim sertifikaları almaları koşulu ile öğretmenlik yapabilmeli. 4. ‘Ulusal Doğa Tarihi Müzesi ve Botanik Bahçesi’ acilen kurulmalı. 5. Biyologların mağduriyetlerinin giderilmesi için biyoloji alanındaki doçentlik bilim dalları yeniden düzenlenmeli.

http://www.biyologlar.com/biyolojideki-son-gelismeler

Bitki Gövdesi

Bitki Gövdesi

Gövde; bitkilerin,özellikle de ağaçların toprak üstünde kalan ve dalların başlangıç yerlerine kadar uzanan ana eksenidir.Bütün üstün yapılı bitkiler kök,gövde,yaprak ve çiçek gibi dört temel bölümden oluşmakla birlikte,gövde; dal,yaprak,çiçek ve meyveleri taşıyan organdır.Gövde embriyonun “harlı tüy” denilen bölgesindeki sürgen doku hücrelerinin büyümesi ve gelişmesiyle oluşur.Embriyodan başlayarak bölünme özelliğini koruyan birincil sürgen dokunun verdiği dokuların tümü,gövdenin birincil yapısını oluşturur.İkincil sürgen dokunun verdiği dokuların tümü de gövdenin ikincil yapısını oluşturur.Gövdenin iç yapısında bitkiyi dik tutan sağlam lifler ve odun doku ile soymuk dokudan oluşan iletim doku sistemi bulunur.Odun dokunun damarları köklerin topraktan emdiği suyu yapraklara iletir.Yapraklarda üretilen besin maddeleri de soymuk doku aracılığıyla köklere ve bitkinin öbür bölümlerine taşınır.Gövdenin ilk ya da temel yapısı (bulunduğumuz iklimde genellikle ilk yaşında) genç kısmında görülen yapıdır.Bu yapıda şu kısımlar göze çarpar: gözenekleriyle birlikte üst deri,klorofilli kabuk ya da kabuk parankiması,kimi bitkilerde (bir çenekliler) bulunmayan iç deri,çevreteker,öz odunu ve odun soymuk borularından oluşan merkez silindir.Fakat bu sonuncular kökte birbirinden ayrı ve almaşık dizili oldukları halde gövdede ve yapraklarda sırt sırta yer alır ve ikişer ikişer soymuk demetlerini oluştururlar. Gövde üstün yapılı bitkilerde dört bölümden oluşur.Yaprakta olduğu gibi gövdenin etrafında da kütinli hücrelerden meydana gelmiş gözenekli bir üst deri,sonra da kabuk adı verilen,yuvarlak hücreler içeren kollenkima ile altında destek dokuyu meydana getiren yoğun ve odun özü taşıyan hücreler içeren sklerankima. Kabuğun altında çoğunlukla dairesel şekilde dizilmiş iletim dokusu demetleri yer alır; dışta kalbur borular (veya soymuk borular) içte odun borular olmak üzere iki bölümü vardır.Kalbur borular uç uca eklenmiş uzun ve kutuplarındaki çeperlerinde bir hücreden diğerine öz suyunun geçmesini sağlayan çok sayıda gözenek bulunan hücre dizilerinden meydana gelmiştir. Kalbur borulara eşlik eden odun borularda uzun kanallar halindedir.Ancak hücre çeperlerinde odunözü değişik kalınlaşmalar gösterir;bu nedenle odun boruların görünüşü de değişik olur: halkasal (halkalı damarlar),(sarmal damarlar),yatay bantlar (çizgili damarlar),çeperlerinde noktalanmalar bulunan tabakalar (noktalı damarlar) halinde.Odun dokuyu oluşturan odun borular topraktan emilen suyu ve mineral tuzları içeren ham besin suyu iletir.Soymuk boruyu oluşturan kalbur borularsa, büyük oranda yapraklardan gelen organik ve besleyici maddelerce zengin ongun besin suyunu taşır.Her bir kalbur boru hücresi daha dar,daha ince zarlı ve uç gözeneklerden yoksun bir arkadaş hücreye yapışıktır.Bu hücreler ongun besin suyunun dolaşımında görev alır.Gövdenin ortasında geniş hücrelerden oluşan bir özek yer alır. İki çenekli çok yıllık bitkilerde bir yıldan yaşlı kısımlarda ayrıca bir takım ikincil oluşumlar ortaya çıkar: mantar, felloderm; ikincil soymuk; ikincil odun onlar kökte de aynıdır. Bu iki organ (kök ve gövde) yaşlandıkça daha çok birbirine benzer. Bir ağaçta,ikincil odunda,artık özsuyu iletimine yaramayan eski ve sert bir orta kısım (öz odunu) ile ham besin suyu ileten yeni ve yumuşak bir çevresel kısım bulunur.İlkbahar odunuyla yaz odunu da birbirinden ayrıdır; birincisinde damarlar ikincisinde daha geniş ve dolayısıyla daha açık renklidir.Öz katmanı öz suyu taşır. Bir ağacın gövdesinden enine bir kesit alındığında odun ve kabuk bölümleri kolaylıkla ayırt edilebilir; kabuk,odundan daha koyu renklidir.Odun dış bölümünü açık renkli diri odun katmanı,iç bölümünü ise koyu renkli bölgelerle farklılaşan özodun katmanı oluşturur.Özellikle ılıman iklim ağaçlarında gövdenin en önemli özelliği,odun bölümlerinde yıllık halka ya da büyüme halkası adı verilen iç içe girmiş halkaların bulunmasıdır;ağaçların yaşı bu yıllık halkaları sayarak saptanabilir. Bütün yeraltı gövdelerinin dalları genellikle yer üstünde dik ve yapraklı gövdeler halindedir ve bütün gövde çeşitleri yan kökler çıkarabilirler; bundan başka çiçek tomurcukları ve çiçek sapları her zaman gövdede bulunur,köklerde asla bulunmaz. Bitkilerin gövdesi,en uç bölümlerindeki bir büyüme bölgesi aracılığıyla tepeden büyür.Bu bölge,hücre bölünmesi yoluyla yeni hücreler oluşturarak gövdenin uzamasını sağlayan mikroskobik boyutlardaki uç sürgen dokuyu içerir.Yaprakların bağlandığı ya da dalların çıktığı yere düğüm,iki düğüm arasında kalan gövde bölümüne de düğümler arası denir. Yapraklar genellikle gövdeye göre eğik durur.Yaprakların birbirlerini gölgelemeden bol güneş ve hava alabilmesi için hepsi gövdeye belli bir açıyla bağlanmıştır.Bu dar açıda,ilerde dal ya da sürgen verecek olan bir koltuk tomurcuğu bulunur.Gövdenin ucuna doğru düğüm araları gittikçe kısalır ve çok sıkışık olan yapraklar en uçta tepe tomurcuğunu oluşturur.Gövdenin uzaması bu tomurcuğun ortasından başlar (uçtan büyürse) ve uzayan kısımda yeni yapraklar doğar.Genç düğüm araları, düğümlerin tersine çok uzarsa buna aradan büyüme denir. Gövde,yaprak,çiçek ve meyveleri taşımak bitkinin toprak üstündeki bölümlerini güneşe doğru yükseltmek ve bu bölümler ile kökler arasında besin ve su iletimini sağlamakla görevlidir.Gövde genellikle toprağın üstünde gelişmekle birlikte,bazı bitkilerde (örneğin patates) hem toprak altı,hem toprak üstü gövdeler vardır.Bazı bitkilerin gövdeleri ise su içindedir.Bitkinin kara yaşamına uymasıyla gelişen bir organ olan gövdenin en basit biçimi karayosununda görülür.Karayosunlarında ortaya çıkan gövde,bitkinin dikey konumda durmasını sağlar.İletim demetleri olan gerçek demetler eğreltilerde; daha gelişmiş biçimlerine de tohumlu bitkilerde rastlanır. Bitkilerin çoğu ana gövde yanlarına dallanır ve her dal yeni yapraklar,çiçekler verdikçe gövdenin küçük bir modelini andırır. Büyüme doğrultusu türe özgü etmenlerce belirlenmekle birlikte dış etmenlerden de önemli ölçüde etkilenir; ışık (ışığa yönelim),nem (suya yönelim) ve yer çekimi (yere yönelim) gibi üstün yapılı bitkilerde gövdenin dış görünüşü çok çeşitlidir.En sık görülen dik gövdelerin yanı sıra yatay gövdeler,yer altında kök sap bulunduğu gibi kimisi sarmaşıcı, kimisi sarılgan ya da sola sarılgan tırmanıcı gövdeler de vardır.Bu gövdeler uzunluklarına oranla çok incedirler.Gövdeler şiş de olabilir ve o zaman yedek besin depo etmek zararlıdır.Gövde kimi bitkilerde çok ufaktır.Bu gibi bitkilere “sapsız” denir.Bunların en aşırı biçimi gövdenin bir tablo halini aldığı soğandır.Özellikle kurak bölge bitkilerinde (sütleğen, kaktüs,deniz üzümü) gövdenin özgül bir biçimi vardır.Kimi gövdeler yaprağa benzer; yassı bir biçimi olabilir; bunlara klodat denir.Kimi gövdelerse sülük hale dönüşür örn:asma. Bitkilerin çoğunda dikey biçimli gövdeye rastlansa da,bazı bitkilerin gövdesi biçim ve işlev değişikliğine uğramıştır.Köke benzeyen toprakaltı gövdeleri (köksap,yumru soğan), toprak üstünde yatay olarak büyüyen stolan, kurak bölgelerde yaprağın görevini üstlenen yapraksı gövdeler,sülük gövdeler,etli gövdeler ya da diken gövdeler bu değişikliğin başka örnekleridir. Bazı gövdeler kısalıp yassılaşarak yassı gövdeyi meydana getirir.Soğan, sarımsak,lüle ve pırasada yassı gövde oluşmuştur.Patates bitkisinin hem toprak altında hem de toprak üstünde gövdesi vardır.Toprak altındaki gövdesi yedek besin depo eder.Besin depo eden toprak altı gövde yumru gövdedir.Bazı bitkilerde gövde etli ve su deposu halindedir.Kaktüs gibi kurak ve sıcak yerlerde yetişen bitkilerde gövde su depo etmiş, yapraklar diken şeklini almıştır.Bu gövde etli,su depo eden gövdedir.Zayıf ve ince gövdeli sarmaşıklarsa çıtalara sarılarak yükselirler.Bunlara sarılıcı gövde denir. Yeraltı gövde ise toprak altında ve yüzeye paralel olarak uzanan gövdelerdir. Manisa lalesi ve ballıbaba bitkisinin gövdesi böyledir.Bazı bitkilerin zayıf ve uzun gövdeleri toprak üstünde dik olarak duramazlar.Toprak yüzeyinde sürünürler.Kavun, karpuz,kabak ve salatalık gibi bitkilerin gövdeleri böyle sürünücü gövdelerdir. Bitki çok genç bir fide halindeyken gövdesi kısa ve incedir.Bitki büyüdükçe gövde de uzayıp kalınlaşır.Ama bir otsu bitkinin,çalının ya da bir ağacın gövdesi hiçbir zaman aynı uzunluk ve kalınlıkta olamaz.Başka bir deyişle gövdenin boyutları ve özellikleri bitkinin kısa ya da uzun ömürlü olmasına göre değişir.Kısa ömürlü otsu bitkilerin gövdesi genellikle yeşil renkli,yumuşak ve eğilip bükülecek kadar zayıftır.Bu yüzden buğday gibi otsu bitkilerde gövdeye çoğu kez “sap” denir.Oysa çalı ve ağaç gibi uzun ömürlü odunsu bitkilerin gövdesi genellikle kahverengi, sert, kalın ve diktir.

http://www.biyologlar.com/bitki-govdesi

Sporla üreme nedir

Spor, döllenme özelliğinde olmayan, monoploit bir üreme hücresidir. Ancak her spor, başka bir hücre ile birleşmeden, tek başına yeni bir organizma oluşturabilir. Sporların dış yüzeyinde bulunan bir örtü, onları çevrenin olumsuz şartlarından koruma özelliği kazandırır. Uygun koşullara düşen her spordan, monoploit bir döl oluşur. Bazı tek hücrelilerde, mantarlarda, su yosunlarında, karayosunu ve eğrelti otu gibi yerleşik bitkilerde görülür. Mantarda sporla üreme Dosya:Fungus spore ejection.oggMedyayı oynat Bir mantardan spor çıkışı.Mantarların hem tek hücreli, hem de çok hücreli türleri vardır. Ancak tüm mantar türleri, spor oluşumuna bağlı olarak ürerler. Bu nedenle mantarlar çok sayıda spor oluşturur. Örneğin, bir ekmek küfünün spor kesesinde oluşan binlerce spor kesesinin patlamasıyla çevreye yayılır. Her spor, ulaştığı ortama musilaj denilen yapışkan madde salgılayarak yapışır. Sporların çimlenmesinden önce, miseller, misellerinden üzerinden ise ince uzun dallanmış yapılar oluşur. Hif denilen bu yapılar üzerinde de spor kesesi oluşur. Sporların bir kısmı bu şekilde eşeysiz ürerken, bir kısmı, eşeyli üremeye katılabilir. Karayosununda sporla üreme Karayosunu, yaşamlarının büyük bölümünü monoploit olan, erkek ve dişi gametofitler halinde geçirirler. Erkek gametofit, mitoz bölünme ile sperm, dişi gametofit ise yumurta oluşturur. Sperm ve yumurtaların birleşmesinden de zigot oluşur. Dişi gametofit üzerinde oluşan bu zigottan embriyo, embriyodan da sporofit döl gelişir. Sporofit döl tüm yaşamını, dişi gametofit üzerinde kısmen parazit olarak sürdürür. Olgunlaşan sporofit dölün, spor keselerinde bulunana diploit hücrelerin, mayoz bölünmesinden sporlar oluşur. Bu sporların uygun koşullarda çimlenmesinden ise yeni erkek ve dişi gametofit döller gelişir. Eşeyli ve eşeysiz üremenin ardışık olarak gerçekleştiği bu üreme şekillerine döl değişimi (metagenez) denir. Genel döl değişiminde, bir türe ait sporofit döllerin sporlarından eşeysiz olarak gametofit döller oluşurken, gametofit döllere ait gametlerin eşeyli üremesiyle sporofit döller gelişir. Plazmodyumda üreme Enfekte olmuş bir anofel cinsi dişi sivrisinek, bir insanı ısırdığında, plazmodyumun sporozoitlerini bireye bulaştırır. Sporozoitler, kan yoluyla karaciğer, dalak ya da kırmızı kemik iliğine geçerler. Buralarda çoğalan sporozoitler kana geçerek, her biri ayrı bir alyuvara girer. Alyuvarlar içinde gelişen sporozoitler, şizontlara dönüşürler. Her alyuvar içindeki şizonttan, çekirdek bölünmeleriyle çok sayıda çekirdek oluşur. Bu şekildeki eşeysiz üremeye şizogoni denir. Şizogoni ile oluşan her çekirdek, sitoplazma ile çevrelenerek merozoitlere dönüşürler. Merozoitlerde alyuvarlar içinde ikiye bölünerek çoğalırlar. Merozoitlerin sayısı belirli bir oranı aştığında, şişen alyuvarlar patlar. Alyuvarlardaki merozoitlerin kan plazmasına dökülmesiyle kişide ateşli titreme denilen sıtma nöbeti başlar. Serbest kalan her merozoit, ayrı bir alyuvara girerek eşeysiz üremesini sürdürür. Bu aşamada sıtma nöbeti durur. Sıtma nöbetleri 48 ya da 72 saat aralıklarla devam eder. Merozoitler eşeysiz üremeyi sürdürürken, insan kanındaki bu gametler, anofel tarafından alınmadıkları takdirde, belirli bir süre sonunda ölürler. Anofelin dişisi sıtmalı bir insanı ısırdığında, emdiği kan ile birlikte plazmodyumun gametlerini de alır. Anofelin midesine geçen gametlerin birleşmesinden zigot oluşur. Bu eşeyli üremeye gametogoni denir. Midede oluşan zigot bağırsak epiteline geçer. Bağırsak epiteline geçen zigottan, ikiye bölünmelerle çok sayıda yeni sporozoitler oluşur. Bu eşeysiz üremeye ise sporogoni denir. Sporogoni ile oluşan sporozoitler, bağırsak epitellerinden vücut sıvısı olan hemolenfle sivrisineğin tükrük bezlerine geçer. Bu sivrisineğin bir insanı ısırmasıyla, plazmodyumun yaşam döngüsü yeniden başlar. Görüldüğü gibi sivrisineğin insanlara bulaştırdığı plazmodyumlar, insanlarda sıtmaya neden olurken, sivrisinekte herhangi bir hastalığa neden olmaz. Su Yosunlarında Üreme Monoploit olan bir su yosunu (ulotriks) tek başına kaldığında mitoz bölünmeyle oluşturduğu sporlarının çimlenmesiyle eşeysiz olarak üreyebilmektedir. Bölünmeyle oluşturduğu, aynı türden ancak, başka su yosunlarının özelleşmiş sporlarından oluşan gametler ile birleşerek (döllenme) eşeyli üreme yapabilmektedir. Zigotun mayoz bölünmesi ile oluşan sporlardan da yeni su yosunu gelişir. Kara yosunları (Bryophyta), ciğer otları, boynuz otları ve yapraklı kara yosunlarını kapsayan bitkiler bölümü. "Bryopsida" tek sınıfını kapsar. Sistematikdeki yeri değişkenlik gösteren bir gruptur. Çok hücreli, fotosentetik bitkilerdir. Kara yosunlarının iletim sistemleri ve gerçek kök, yaprak ve gövdeleri yoktur. Çoğu yapraklı olan küçük yapılı türler içerirler. Kök yerine bir ya da çok hücreden oluşan rizoidler (köksü yapılar) bulunur. Kara yosunlarında sporofit ve gametofit evre olmak üzere 2 farklı yaşam evresi vardır. Gametofit evrede bitki tamamen ince ve yumuşak yapraksı formda ve bir sapa bağlı olup, birkaç hücre kalınlığında olan yapraklar orta ana damar genellikle içermez. Fotosentezin büyük bir kısmını gametofit nesil gerçekleştirir. Fotosentez sonucu oluşan besinlerini depolayan bitkilerdendirler. Yaklaşık 16.000 türü bilinmektedir. Karayosunlarında Üreme Diploid faz, suyosunlarına göre biraz daha uzundur. Erkek ve dişiler ayrı isim alır. Dişi gametofite arkegonyum, erkek gametofite anteridyum denir. Döllenme ve zigotun gelişimi arkegonyum üzerinde olur.

http://www.biyologlar.com/sporla-ureme-nedir

Embriyonik örtüler ve gelişim

A-Balık ve kurbağalarda gelişim: Kabuk,amnion zarı ve sıvısı,allantois bulunmaz Yumurtada besin içeriği az olduğundan embriyonal evrede beslenme davranışı veya başkalaşım görülür Embriyonik gelişimde canlı dış ortamla madde alış verişi yapar B-Sürüngen ve kuşlarda gelişim: Kabuk,korion,amnion,vitellüs ve allantois kesesi bulunur Gelişim yumurta kabuğu içinde gerçekleşir Embriyo ile dış ortam arasında sadece gaz alış verişi bulunur Besin vitellüsten sağlanır Artık maddeler allantoiste birikir.Allantois solunumda da rol alır Amnion zarı embriyoyu sarsıntı,ısı değişimleri,vb. fiziksel etkilerden korur Korion koruma ve solunumda rol alır C-Memelilerde gelişim: 1-Gagalı memeliler: Vitellüs oldukça fazladır Döllenen yumurta bir süre ana canlıda kaldıktan sonra yuvaya bırakılır Yumurtadan çıkan yavru bir süre anaya bağımlı ve ondan süt emerek beslenir Doğum görülmez Ana vücudu sadece döllenme ortamı ve bir süre koruma sağlar 2-Keseli memeliler: Yumurtada az vitellüs vardır Bir süre annenin uterusunda gelişen embriyo doğar Doğan yavru keseye geçer ve burada süt bezleri ile beslenmesini ve gelişimini sürdürür 3-Plasentalı memeliler: Kabuk bulunmaz Allantois ve vitellüs keseleri körelmiştir Amnion zarı ve sıvısı bulunur.Bu yapı embriyoyu basınç,ısısal değişim vb. fiziksel etkilerden korur Plasenta embriyodan chorion ve allantois ile anneden uterus dokularından oluşmuştur Embriyo solunum beslenme ve boşaltım ihtiyacını plasenta aracılığı ile ana canlıdan karşılar Plasenta aracılığı ile anneden embriyoya besin,O2 geçer.Embriyodan anneye ise CO2 ve metabolik artıklar geçer Anne kanı ile embriyo kanı karışmaz Plasenta ayrıca 3. aydan itibaren Progesteron üreterek hamileliğin devamında önemli rol alır Plasenta ile embriyo arasında ise göbek bağı bulunur Göbek bağı;Amnion zarından oluşur,içinde vitellüs kesesi,allantois ve embriyoya ait kan damarları bulunur Embriyoya ait atar damar plasentaya CO2 ve artıkları taşır (Kirli kan),Toplar damar ise plasentadan besin ve oksijen taşır(Temiz kan) Plasentada aktif taşımanın gerçekleşmesi nedeni ile enerji ihtiyacı ve oksijen tüketimi oldukça fazladır Doğumdan sonra göbek bağının kesilmesi ile embriyo bağımsız birey haline gelir.

http://www.biyologlar.com/embriyonik-ortuler-ve-gelisim

Gagalı, keseli ve plasentalı memeli gruplarının temel farklarını yazınız.

1-Gagalı memeliler: Vitellüs oldukça fazladır Döllenen yumurta bir süre ana canlıda kaldıktan sonra yuvaya bırakılır Yumurtadan çıkan yavru bir süre anaya bağımlı ve ondan süt emerek beslenir Doğum görülmez Ana vücudu sadece döllenme ortamı ve bir süre koruma sağlar 2-Keseli memeliler: Yumurtada az vitellüs vardır Bir süre annenin uterusunda gelişen embriyo doğar Doğan yavru keseye geçer ve burada süt bezleri ile beslenmesini ve gelişimini sürdürür 3-Plasentalı memeliler: Kabuk bulunmaz Allantois ve vitellüs keseleri körelmiştir Amnion zarı ve sıvısı bulunur.Bu yapı embriyoyu basınç,ısısal değişim vb. fiziksel etkilerden korur Plasenta embriyodan chorion ve allantois ile anneden uterus dokularından oluşmuştur Embriyo solunum beslenme ve boşaltım ihtiyacını plasenta aracılığı ile ana canlıdan karşılar Plasenta aracılığı ile anneden embriyoya besin,O2 geçer.Embriyodan anneye ise CO2 ve metabolik artıklar geçer Anne kanı ile embriyo kanı karışmaz Plasenta ayrıca 3. aydan itibaren Progesteron üreterek hamileliğin devamında önemli rol alır Plasenta ile embriyo arasında ise göbek bağı bulunur Göbek bağı;Amnion zarından oluşur,içinde vitellüs kesesi,allantois ve embriyoya ait kan damarları bulunur Embriyoya ait atar damar plasentaya CO2 ve artıkları taşır (Kirli kan),Toplar damar ise plasentadan besin ve oksijen taşır(Temiz kan) Plasentada aktif taşımanın gerçekleşmesi nedeni ile enerji ihtiyacı ve oksijen tüketimi oldukça fazladır Doğumdan sonra göbek bağının kesilmesi ile embriyo bağımsız birey haline gelir.

http://www.biyologlar.com/gagali-keseli-ve-plasentali-memeli-gruplarinin-temel-farklarini-yaziniz-

İnsan embriyosunu koruyan virüs DNA’da gizleniyor

İnsan embriyosunu koruyan virüs DNA’da gizleniyor

Hayatta kalmamız ve karmaşık vücut yapımız tamamen ilk insan embriyolarında bulunmuş olan kaçak yolcuların “virüs”lerin eseri olabilir.

http://www.biyologlar.com/insan-embriyosunu-koruyan-virus-dnada-gizleniyor

Kök Hücre Araştırmaları  ve Bioetik

Kök Hücre Araştırmaları ve Bioetik

Ahlak, Etik, Biyoetik: Temel Kavramlar Prof. Dr. Yeşim IŞIL ÜLMAN

http://www.biyologlar.com/kok-hucre-arastirmalari-ve-bioetik

Yetişkin hücreleri kök hücreye dönüştürecek kokteyl

Yetişkin hücreleri kök hücreye dönüştürecek kokteyl

Kudüs’te bulunan Hebrew Üniversitesi araştırmacıları, yetişkin hücreleri kandırarak pluripotent (gelişen bir embriyonun erken aşamalarında var olan,

http://www.biyologlar.com/yetiskin-hucreleri-kok-hucreye-donusturecek-kokteyl

Kimerizmin Yükselişi: Bilim insanları ilk kez başarılı bir şekilde insan- domuz embriyosu oluşturdu

Kimerizmin Yükselişi: Bilim insanları ilk kez başarılı bir şekilde insan- domuz embriyosu oluşturdu

Salk Enstitüsünden bir grup bilim insanı başarılı bir şekilde domuz embriyosunda insan hücreleri ve dokuları oluşturdu. Bu aynı zamanda yapılmış ilk domuz- insan embriyosu.

http://www.biyologlar.com/kimerizmin-yukselisi-bilim-insanlari-ilk-kez-basarili-bir-sekilde-insan-domuz-embriyosu-olusturdu

Kök Hücre Nedir?

Kök Hücre Nedir?

2013 yılında Cell‘de yayımlanan bir araştırmada, bilim insanları ilk defa olarak insan deri hücrelerinden embriyonik kök hücreleri üretmeyi başardılar. Görsel Telif: Juan Gaertner

http://www.biyologlar.com/kok-hucre-nedir-1

Körlük ve kök hücre tedavisi: Yeni geliştirilen yöntem körlüğe çare olabilecek mi?

Körlük ve kök hücre tedavisi: Yeni geliştirilen yöntem körlüğe çare olabilecek mi?

Kök hücre tedavisi tıpta oldukça yeni sayılabilecek bir tedavi yöntemidir. Göz hastalıklarında uygulanması ise daha da yeni sayılır. Uygulama her ne kadar yeni olsa da bu konuda beklentiler oldukça yüksek.

http://www.biyologlar.com/korluk-ve-kok-hucre-tedavisi-yeni-gelistirilen-yontem-korluge-care-olabilecek-mi

Akdeniz Üniversitesi’nden Bilime Önemli Katkı

Akdeniz Üniversitesi’nden Bilime Önemli Katkı

Akdeniz Üniversitesi’nden bir Türk bilim insanının da bulunduğu, Cambridge Üniversitesi’nden bir ekip, vücudun ana hücreleri olan iki farklı türdeki kök hücreleri kullanarak erken dönem fare embriyosuna benzer bir yapay oluşturmayı başardılar.

http://www.biyologlar.com/akdeniz-universitesinden-bilime-onemli-katki

Yapay Rahimler ile İnsanlığın Matrix Çağı Başlıyor

Yapay Rahimler ile İnsanlığın Matrix Çağı Başlıyor

Matrix filmini izlemeyeniniz yoktur sanırım. Filmin baş karakteri Neo’nun içinde doğduğu o küvezleri hatırlayın. Milyonlarca insan o küvezlerde dünyaya getiriliyor ve yaşama ilk orada başlıyordu. Matrix dünyasının gerçek olması artık bir hayal değil.

http://www.biyologlar.com/yapay-rahimler-ile-insanligin-matrix-cagi-basliyor

24 Yıl Önce Dondurulan <b class=red>Embriyodan</b> Sağlıklı Bir Bebek Dünyaya Geldi!

24 Yıl Önce Dondurulan Embriyodan Sağlıklı Bir Bebek Dünyaya Geldi!

1992 yılında yapay ortamda döllendikten sonra dondurulan bir embriyo, bu yılın başlarında bir rahme yerleştirildi ve geçtiğimiz ay sağlıklı bir bebek olarak dünyaya geldi. 24 yıl donmuş halde bekledikten sonra sağlıklı bir birey olarak yaşamaya devam eden bebek, akıllara Kaptan Amerika’yı getirdi.

http://www.biyologlar.com/24-yil-once-dondurulan-embriyodan-saglikli-bir-bebek-dunyaya-geldi

 
3WTURK CMS v6.03WTURK CMS v6.0