Su ve Mineral Madde Metabolizması
Bitki hücresine alınan su canlılığı sağlayan tüm olayların yürümesi için gerekli ortamı sağlar. Bilindiği gibi su yarıkovalent, elektron çiftlenmesi ile oluşan O - H bağlarının 105 derecelik açı yapması ve daha çok -2 yüklü oksijene yakın olan elektron çiftlerinden oluşması nedeniyle çift kutuplu, dipol bir moleküldür. Bu nedenle su reverzibl olarak H(3)O +, hidroksonyum ve hidroksil şeklinde iyonlarına ayrılabilir. Mineral iyonları çevrelerine zıt yüklü uçlarını çekerek moleküler su moleküllerinden su zarfı oluşturur ve. Bu şekilde de hem doymuş hidrokarbonlar ve lipidler dışındaki tüm küçük moleküllü organik maddeleri, hem de kuvvetli asidik ve bazik maddelerden polar tuzlara kadar iyonik karakterli maddeleri değişen oranlarda çözebilir. Bu sayede de çözelti ortamında termik hareketlilik kazanan maddelerin moleküllerinin çarpışarak kimyasal tepkimeye girmesi ve canlılık için gerekli biyokimyasal tepkimelerin yürümesine uygun ortam sağlar.
Dipol karakteri nedeniyle su molekülü makromoleküller ve polimerler zincirleri üzerindeki iyonik gruplara tutunarak zincirlerin arasına girer ve uzaklaşmalarına neden olur. Bu boşluklara girme olanağı bulan enzim proteinleri gibi suda çözünür maddeler de canlılık olaylarının sürmesini sağlar. Tüm bu nedenlerle su canlılığın en temel maddelerindendir. Ayrıca gene dipol özelliği ve iyonlaşabilir oluşu, kinetik tanecikler oluşturması nedeniyle birçok madde ile kolayca tepkimeye girebilir ve canlılık olaylarının büyük çoğunluğunda kimyasal ajan olarak rol oynar. Oksitlenme tepkimelerine elektron sağlar, redüklenme tepkimelerinde de proton kaynağı görevi yapar.
Dipol kutupları elektriksel iletken olması ve iyonlaşma oranının tersinir olarak içinde çözünmüş olan iyonik maddelerin hakim yüküne bağlı oluşu biyoelektriksel olayların sağladığı canlılıkla ilgili işlevlerin gerçekleştirilebilmesi olanağını verir.
Termik hareketliliğinin yüksek olması nedeniyle yaptığı basınçla organel ve hücrelerin dış basınç etkisi ile ezilmesini önler.
Su metabolizması adı altında toplanabilecek tepkimelerin canlılıkla ilgili her tepkime zinciri ve devrelerine yayılmış olması, bu tepkimelerin birbirinden çok farklı ve bağımsız işlevlerinin yüksek sayıda oluşu bu konunun bir bütün halinde ele alınmasını engeller. Bunun yerine diğer konular içinde yeri geldikçe söz edilmesi daha kolay ve anlaşılabilir bir yaklaşımdır.
Mineral elementlerinin canlılıktaki rolleri ise daha kolay sınıflandırılabilir:
Esas elementler belli bir derişim aralığında sağlıklı, normal yaşamın sürdürülebildiği, bunun altındaki ve üstündeki derişimlerinde önce geçici olabilen, daha sonra da kalıcı arazlar bırakan eksiklik ve toksik etkileri, bu sınırların dışında da ölümcül etkileri görülen elementlerdir. Bu derişim aralıkları açısından da makro ve mikro elementler ayrılır. Herbir elementin metabolizmadaki ve canlılıktaki rolleri farklı olduğundan canlı türleri arasında ve bir canlının yaşam devrelerine, içinde bulunduğu ekolojik koşullara göre gereksinimleri farklılıklar gösterir. Bu açıdan hem biyokimyasal, hem fizyolojik, hem de ekofizyolojik açılardan incelenmeleri sonucunda doğru değerlendirmelere ulaşılabilir.
Önemli bir konu da bir elementin derişimindeki değişimlerin diğer elementlerden yararlanılması, kullanılması üzerindeki sinerjistik ve antagonistik etkileridir. Bu etkileşimler sonucu hem iyonik matrikste hem de organik metabolizmada çeşitli değişiklikler meydana gelir. Azot, P, Ca ve Mg ile Na ve K, Fe, Zn, u ve B elementlerinin tümü arasında bu tür ilişkiler ağı vardır. Örneğin P, K ve Zn ile Cu ile sinerjistik etkiye sahiptir, Mg ile hem antagonistik hem sinerjistik ilişkisi vardır. Azot Mg üzerinde antagonistik, K ve B üzerinde sinerjistik etkilidir. Bu tablo da P ile N arasındaki dolaylı ilişkiyi ortaya koyar vs.
Antagonistik ilişki aynı bağlayıcı uç , kök için rekabete dayanan Zn+2, Cd+2 ilişkisi şeklinde olabildiği gibi Cu+2 ile S-2 tepkimesi sonucunda çözünmeyen CuS oluşumu gibi deaktivasyon ilişkisi de olabilir.
Türler arasındaki seçici beslenme farklılıkları yanında elementler arası metabolik ilişkiler matriksi populasyonlar arasında davranış farklılıklarına yol açarak rekabetsel ilişkiler üzerinde etkili olur.
Mineral iyonlarının genelde çok önemli olan bir özellikleri organik maddelerin ve temelde onların oluşturdukları yapıların oluşumu, sağlamlığı ve işlevleri üzerindeki etkileridir. Membranlar yanında nükleik asitlerin helislerindeki fosfat gruplarının aralarındaki katyonlar sayesinde bilinen yapılarına sahip olmaları Ca, Mg, P, S elementlerinin yapısal işlevlerini gösterir.
İz elementler pH 7 civarında yürüme durumunda olan hidrolitik ve sentetik tepkimelerin enzimlerinin aktivatörü olarak rol oynarlar. Bu işlevlerini de Lewis asit ve bazlığı yolu ile su da dahil, sübstratları polarize ederek yaparlar. Lewis asitleri elektron çifti alabilen, bazları da verebilen maddeler olarak tanımlar. Klasik asit - bazlar için geçerli olduğu gibi de maddelerin elektron çifti alma - verme potansiyellerinin büyüklüğüne göre bir madde çiftinin asitlik - bazlık ilişkisini belirler. RNA polimeraz, nükleazlar, fosfatazlar, esterazlar gibi bir çok enzimin Zn+2, Mn+2 gereksinimleri buna örnektir.
İz elementlerin aynı mekanizma ile yürüyen önemli bir rolleri de elektron transfer zincirlerindeki rolleridir. Fizyolojik pH aralığında yürümesi zor olan bu tepkimelerde de Fe+2/ Fe+3/Fe+4, Cu+/Cu+2, Mn+2/ Mn+3/Mn+4, Mo+4/ Mo+5/Mo+6, Co+/Co+2/Co+3 ve Ni+/Ni+2/Ni+3 iyonları rol alır. Moleküler azotun fiksasyonu ile amonyağa dönüştürülmesinde de Fe, Mo ve V çiftlenmemiş elektron kaynağı ve donörü olarak iki aşamalı şekilde rol alırlar ve enerjetik açıdan fizyolojik pH aralığında yürümesi zor olan tepkimenin gerçekleşmesini sağlarlar.
Mineral iyonlarının organik madde metabolizmasındaki en belirgin rollerinden bir diğeri de klorofil, hemoglobin gibi canlılığın sürmesini sağlayan büyük moleküllerin yapısında molekülün stabilitesini sağlayan koordinasyon merkezi olmalarıdır. Eşlenmemiş elektron çifti paylaşımı ile oluşan doğal bileşikler renkli ve suda çözünmeyen bileşiklerdir. Metal iyonlarının koordinasyon bağı sayısı değerliklerinden farklı değerlerdir.
Amino asitlerin yan zincirlerindeki fonksiyonel grupların protonları yerine metal bağlanması ile de koordinasyon bileşikleri oluşabilir. Özellikle histidin, metionin, sistein,, tirozin, glutamat ve aspartat yanında serin, treonin, lizin ve treptofan amino asitlerinin hidroksi veya amino grupları aracılığı ile koordinasyon bileşikleri yapmaları peptid ve proteinlerin bu yolla sağlam yapılar oluşturmalarına neden olur. Bu açıdan amino asitler ile katyonlar arasında seçicilik ilişkilewri vardır, örneğin Tirozin yanlızca Fe+3 ile bağlanabilir. Sisteinin ise monovalent Cu, divalent Zn ve Cu ile Fe, trivalent Fe ve Ni +1-3, Mo+4 -6 ile koordinasyonu mümkündür. Cu + ve +2, Zn+2 ile Fe+3 amino asitlerle sağlam koordinasyon bağları yaparken, diğerlerinin bileşiklerinin stabilitesi düşüktür.
Global proteinlerin metal iyon komplekslerinin enzimatik aktivitede rol oynayabilmesi için 4 veya 6lı koordinasyon bağ kapasitelerinin doymamış olması gerekir. Bu açık uca geçici olarak su gibi bir molekül bağlanır ve sübstratla yer değiştirdiğinde kataliz başlayabilir. Ancak proteinden elektron transferinin doğrudan gerçekleştiği, metal iyonunun elektron alışverişi yapmadığı sistemlerde buna gerek yoktur. Temelde metalik koordinasyon protein molekülünün sterik geometrisini sübstratın adsorpsiyonu ile sterik yapısını tepkimeye uygun hale getirerek sağlar.
Azot bilindiği gibi nükleik asit, protein, peptid, amid ve amino asitlerin önemli bir bileşenidir. Bunların yanında birçok sekonder metabolizma ürününün de sentezi ve gereksinim duyan bitki grubunun normal yaşam devrini sağlıklı şekilde sürdürmesi için gereklidir.
Topraktan alınan nitrat ve amonyum ksilemden aynı şekilde tuzu halinde iletilir, ancak fotosentetik dokularda elde edilen karbohidratlarla tepkime zincirlerine girebildikleri hücrelerde redüklenerek -NH2, amino grubu içeren organik azotlu bileşiklere dönüşürler. Nitratın da amonyuma dönüştürülmesinden sonra glutarik asit gibi iletilebilir organik asitler üzerinden yağ asitlerine amino grubunun katılması ile amino asitler meydana gelir.
Aromatik a - amino asitlerin sentezinde ve özellikle birbirlerine dönüşümlerinde hidroksillenme tepkimesi önemlidir, örneğin fenilalaninin hidroksillenmesi ile tirozin oluşur. C -, O - ve N – metillenmeleri de önemlidir ve örneğin homosisteinden sağlanan metil grupları metiyonin, glisin veya serin metili ile de tüberin metaboliti sentezlenir.
Aromatik amino asitlerin mikroorganizmalar ve bitkilerdeki temel sentez yolu , adını ilk bulunduğu şikimi-no-ki
bitkisinden alan ve benzen halkalı şikimik asidin biri açılmış çift halkalı korizmik asitin L – fenilalanin, tirozin veya triptofana dönüştüğü şikimik asit veya şikimat yoludur. Fosfoenol piruvat ile eritroz – 4 – P tetrozunun kondansasyonundan sentezlenen ara maddeler üzerinden şikimik asit korizmik asite ve sonra üç farklı organik asite dönüşerek aromatik amino asitleri verdiğinden sonraları korizmik asit yolu adını alan sentez yoludur.
Bakterilerde salisilik asit gibi maddeler, yüksek bitkilerde linyin ve alkaloidler, flavonoidler bu aromatik amino asitlerden ve özellikle triptofandan sentezlenir. Linyinler sinnamik asitlerin alkollerinin ürünüdür.
Azot eksikliği azotun klorofil yapısındaki 4 pirol halkasındaki yeri nedeniyle klorofil oluşumunu engeller ve fotosentez eksikliği nedeniyle büyüyüp, gelişmesini önler. Doğal olarak protein, enzim ve nükleik asit metabolizmalarını yavaşlatır, durdurur ve yaşlı doku ve organlardan başlayan boşalma ile ihtiyarlama - senesans ve ölüme neden olur. Azot bileşiklerinin yapısal proteinler gibi taşınamayan formlarının proteolitik enzimler gibi hidroliz enzimlerince parçalanarak iletilebilir formlara dönüştürülebilmesi genç ve büyüyen dokular ile organların olabildiğince korunması olanağını sağlar.
Fosfor bilindiği gibi enerji metabolizmasında çok önemli yer tutar. Yeşil bitkilerin güneşten, bazı bakterilerin ise inorganik bileşikleri parçalayarak elde ettiği fiziksel enerjiyi yüksek enerjili kimyasal bağ enerjisi halinde saklayıp, gerektiğinde açığa çıkartılması ile kimyasal ve fiziksel işlerin yapılmasında kullanmasını sağlar. Bu konu fotosentez ve kemosentez, solunum ve sindirim metabolizmaları içinde incelenecektir.
Burada elementel fosforun enerji metabolizmasındaki kilit rolünün nedenleri üzerinde durmak yeterli olabilir. Nükleik asit sentezinde organik bazlar fosfatları halinde sübstrat olarak kullanılıp tepkime sırasında fosfatın açığa çıkması, solunumda elde edilen enerjinin ATP kazancı olarak hesaplanması iyi birer örnektir.
ATP su ile tepkimeye girdiğinde üç fosfat grubundan biri açığa çıkarken bu fosfat bağında yoğunlaşmış olan enerji açığa çıkar. Bu enerji diğer bağ enerjilerine göre yüksek olduğundan yüksek enerjili, enerjice zengin bağ adını alır. Bunun nedeni de bu bağın oluşturulmasında yüksek enerji kullanılmasına gerek oluşudur.
ATP ve NADP.H2 enerji metabolizmasının kilit maddeleridir. Bunun temel nedeni oluşumlarının sübstratları olan maddelerin kinyasal potansiyeli ile bu tepkime ürünlerinin kimyasal potansiyel farkının yüksek oluşudur. Adenin de fosfat gibi eksi yüklüdür, bu nedenle adenine 3 fosfatın bağlanması ile ATP sentezlenebilmesi için yüksek enerji kullanılması gerekir, serbest enerji önemli miktarda artar. Organik bileşiklerin fosforilasyonu, yani ATP veya benzeri bir fosfat kaynağından grup transferini kinaz enzimleri sağlar.
Fosfat, ADPve ATP sulu çözeltilerinde farklı değerlikli formlarda bulunabilen, Mg ve Ca iyonları başta olmak üzere katyonlarla kelasyon tepkimesine girebilen maddelerdir. Bu nedenle de pH gibi etmenlere bağlı olarak ATP değişik yollardan sentezlenebilir. Nötr pH civarında divalent katyonlara gerek olmadan
ADP + HPO4 + H3O ® ATP + H2O
tepkimesiyle, ATP sentetaz enziminin etkisiyle sentezlenir. Bu molekülün hidroliz denge sabitesi diğer fosfat bileşiklerinden çok daha yüksektir, bu nedenle de diğer organik bazların trifosfatları oluşturulamaz.
Bu pHa bağlı denge durumu sayesinde ATP, ATPaz izoenzimlerinin etkisiyle ve büyük oranda ADP ve fosfata hidroliz olabilir. PH 7 civarında ADP moleküllerinin yaklaşık yarısı -2, diğer yarısı ise -3 değerlikli iken ATP molekülleri de yarı yarıya -3 ve -4 değerliklidir. Mg+2 veya Ca+2 ve diğer katyonlar aynı moleküldeki fosfat köklerinin (-- O -1) yüklü oksijenleri arasında elektrostatik olarak tutularak kelatlaşmayla moleküllerin form sayılarının artışına neden olur. Bu çeşitlilik değişik özelliklerdeki izoenzimlerin aktiviteleri ile ATP enerji deposunun kontrollu şekilde farklı metabolik olaylarda kullanılabilmesini sağlar.
Yani önemli bir konu da açığa çıkan ADP molekülünün serbest halde kalabilmesi ve başka bir tepkimeye girmemesidir. NADP.H2 dışındaki difosfatlar ise başka tür tepkimelere de girebilir. Hidrolizlerinin kinetik denge sabiteleri düşük olduğundan hidrolizleriyle çıkan enerji de düşüktür. Bu nedenle de enerji depolanmasında tekrar kullanılamazlar. ATP ve NADH2 nin enerji metabolizması açısından önemli bir özellikleri de membranlardan kolay geçebilmeleri ile enerji dağılımını sağlayabilmeleridir.
Fotosentezde kloroplastlardaki devresel olmayan elektron iletimi sırasında oluşan NADP.H2 NADPnin redükte formudur ve bu iki form bir redoks çifti olarak eşit miktarlarda birarada bulunur. NADP molekülünün yanlızca NAD kısmı 2 e- alarak NADPH2 oluşturur. Bu elektron alışverişi zinciri elektron akımını sağlar ve bu şekilde ışık enerjisi elektron iletimi yoluyla enerji kazancına, depolanmasına yol açar. Bu konu fotosentez incelenirken görülecektir.
Fosfatazlar fosfat grubu olan organiklerden fosfat gruplarını ayıran enzimler olarak metabolizmada önemli bir yer tutarlar. Optimum pH değerlerine göre asit ve alkalin fosfatazlar olarak ikiye ayrılırlar.
Bu mekanizmalar hücrenin endojen tepkimeleri başlatma ve yürütmesi için gereken yeni kimyasal bağ oluşumuna dayanan sentez ve dönüşüm tepkimelerine enerji sağlar. Gerek duyulduğunda enerji denetim altında yüksek enerjili fosfor bağının ATP sentetaz ile sentez ve ATPaz ile hidrolizi ile biyolojik iş için enerji sağlanır.
Fosfor fotosentezle güneş enerjisinin önce şekerler ve sonra polisakkaritler halinde karbohidratlarda kimyasal bağ enerjisi halinde bağlanarak depolanması, gerektiğinde sindirimleri ve solunumla açığa çıkarılan bu enerjiyle tüm metabolizmanın yürümesini sağlar. Tüm bu nedenlerle fosfata sürekli gereksinim duyulduğundan toprak çözeltisinde çok az miktarda bulunan faydalı fosforun sürekliliği gerekir. Toprak çözeltisindeki fosfatın mineralojik ve organik fosfatla denge halinde olması da bunu sağlar. Dengeyi sağlayan ana etmen bakteriyolojik etkinliktir. Fakat toprak tiplerine göre toplam fosfat miktarı geniş açılım gösterir.
Bekleneceği üzere bitkilerde fosfor özellikle aktif büyüme ve gelişme gösteren doku ve organlarda yoğunlaşır. Kökler sürekli büyüyüp, gelişen organlar olduğundan organik fosfat bileşiklerine bağımlıdırlar. Yani köklerle yerüstündeki fotosentetik dokular arasındaki karşılıklı bağımlılık bitkilerin yaşam devirlerinde çok önemli yer tutar. Bu nedenle de yeni gelişen tek yıllık veya ilkbaharda yeniden büyüyüp gelişmeye başlayan çok yıllık bitkiler Organik posfat bileşikleri tohum ve tomurcuk gibi büyüme potansiyeli yüksek olan organların dokularında da depolanır. İndirgenmiş formu hiç görülmez ve %75 -80 oranında çözünür bileşikleri halindedir. Özsuda Doku ve organlarda fikse edilen kısmı düşük olduğundan gereksinime göre floemden ve parankimadan iletilir. Bu nedenle de fosfat beslenmesi eksikliğinde önce yaşlı organlarda eksiklik arazları görülür. Bu organlardaki fosfatlı bileşiklerin sindirimi ve fosfatazlar etkisiyle parçalanmaları sonucunda serbest hale geçerek iletilirler. Fosfor eksikliğinde azot metabolizması yavaşlar, inorganik azot asimilasyonu azalınca nitrat birikimi olur ve bu da yaşlı organların koyu yeşil bir renk almasına neden olur. Bitkiler bodur kalır, kök gelişimi zayıf olur. Domates bitkisi iyi bir fosfor eksikliği indikatörüdür ve özellikle yapraklarının alt tarafında asimile olmayan şekerler ve nitrat birikimi nedeniyle mor lekeler görülür.
Genelde bitkide P, N ve K dan daha azdır ve yaşlı organlardan tohumlara doğru artan % 0.0X -% 1.X oranları arasında bulunur ve yarısından fazlası çözünür formdaki organik bileşikleri halindedir. Yani ortalama olarak azot gereksiniminin beş - onda biri kadar fosfor alırlar.
Kükürt özellikle yapısal proteinler ile protein yapısına girmeyen amino asit ve bazı peptidlerin yapısına girer. Yapısal protein zincirleri arasında kuvvetli S - S, S - H bağları oluşturarak zincirler arasına su moleküllerinin girmesini önler, termik stabilitelerini arttırarak çok sağlam yapılar oluşturmalarını sağlar. Proteinlerdeki oranı proteinin işlevine göre tipik olarak 3.10-5 - %7 arasında değişir, bazı türlerde sülfat halindeki S/ toplam S oranı > %50 olabilir. Toplam S açısından da familyalar arasında önemli farklar görülür, Graminae < Leguminosae < Cruciferae fam.larındaki açılım %0.1 - 1.5 / k. ağ. gibi yüksek bir orandadır ve bu fark tüm bitki düzeyindedir.
Mikroorganizmalardan yüksek bitkilere kadar dağılım gösteren diğer sülfürlü bileşiklerin kimyasal çeşitliliği çok yüksek düzeydedir e bu nedenle kemotaksonomik karakterler arasında önemli bir yer tutar.
Metabolizmalarının tam olarak incelenmiş olduğu söylenemez. Sistein, metionin ve çeşitli vitaminler ile koenzimler gibi bazı sülfürlü bileşiklerin hücre yaşamında, büyüme, gelişme ve çoğalmasındaki önemi bilinmektedir..
Bu yaşamsal organik sülfür bileşiklerinin çoğu en redükte formları halindedir, sülfit bağı ile bağlıdırlar. Örneğin sistein, metionin amino asitleri, glutation peptidi, ergotiyonein tiolü, koenzimlerden tiamin pirofosfat, Co-A ve biyotinde durum böyledir. Sülfidril kofaktörü halinde bir çok enzimin aktivitesinde de önemli rol oynar.
Sülfat ksilemde iyonik bileşiği halinde iletildikten sonra ATP de sübstrat olarak kullanılarak sülfürilaz ve kinaz enzimlerince katalizlenen tepkimelerle fosfat grupları ile yer değiştirerek adenozin difosfosülfat halinde metabolizmaya girer. Mobilitesi yüksekse de metabolik etkinliği, kolay dönüşebilir oluşu nedeniyle iletimine pek gerek duyulmaz. Normal olarak alınan sülfatın büyük kısmı protein sentezinin yüksek olduğu genç dokulara gider ve büyüme potansiyeli olan organlarda depolanır. Eksikliği halinde protein sentezinin azalması nedeniyle çözünür azotlu maddelerin biriktiği görülür.
Elektron iletiminde çok önemli rolü olan negativ red-oks potansiyeline sahip demirli proteinlerin bir kısmındaki Fe/ S prostetik grup merkezleri özel işleve sahiptir: fotosentez, azot fiksasyonu, sülfit ve nitrit red-oks tepkimeleri ve DNA tamir edici endonükleaz aktivitesi.
Tipik olarak Fe iyonları R-S halindeki sistein sülfürü ile koordinasyon yapar. Elektron iletim sistemi oluşturan ferredoksinler gibi bazıları bağımsız iken flavoproteinler, S bakterilerinin sülfüraz, kinaz gibi bazıları Ni, V e Mo gibi diğer prostetik elementlerle beraber etkinlik gösterebilir. Ferredoksinler, mitokondrilerin sitokromlu membran proteinlerinde ve ileride görülecek olan fotosistem II fotosentez sisteminde iki sisteinat yan zincirinde 2 Fe - 2 S merkezi içerir ve bu iki merkez -S - S- bağı ile dianyon oluşturur ve Fe+2 Ö Fe+3 dönüşümleri elektron iletimini sağlar.
Kötü ve / veya keskin kokular salgılayan bitkilerin kokulu uçucu bileşikleri genellikle küçük moleküllü olan tiyoller ile sülfitlerdir ve öncü bazı maddelerin enzimatik veya kimyasal parçalanma ürünleridir. Merkaptanların tipik kokuları birçok Crucifereae türlerinde karakteristik olup bazı tiyoglikozitler veya amino asitlerin dönüşümü ile ortaya çıkarlar.
Çeşitli alifatik ve aromatik sülfitler mikroorganizmalarda yaygın olarak bulunur ve bunlardan en iyi bilinenleri penisilin, gliotoksin, basitrasin gibi antibiyotiklerdir. Bu maddeler algler ve funguslarla yüksek bitkilerde de bulunur.
Proteinik olmayan amino asitlerin hemen hepsi sisteinden S-sübstitüsyonu ile oluşur ve sistein ile benzeri öncülerden sentezlenirler. Yüksek bitkiler kükürtlü amino asitlerden ancak sisteini öncü madde olarak kullanabilir ve bu nedenle de sisteinin bu metabolizmanın merkez maddesi olduğu söylenebilir.
İzotiyosiyanat oluşturan tiyoglikozitler kolayca enzimatik hidrolize uğrayabilirler ve yeni bir moleküler düzen kazanarak hardal yağlarını, glükoz ve sülfatı oluştururlar. Kemotaksonomik karakter olarak da önemli veriler sağlarlar. İzotiyosiyanatların çoğu keskin tadları ile kendilerini belli ederler ve baharat olarak kullanılırlar.
Glükozitler glükozun R- yan zincirinde farklılık gösteren ve izotiyosiyanat oluşturan elliden fazla üyesi olan bir madde grubudur. Düz veya dallanmış alkil yan zincirleri ile çeşitli şekillerde hidroksillenmiş veya düz zincirli türevleri vardır. Bu türevlerin büyük bir kısmı a-amino asit ve a-keto-asit metabolizmalarında rol alır.
Potasyum 138 pikometre iyon çapına karşılık tek yükü ve 239300 pm2 yüzey alanı nedeniyle şişirici etkisi, 6-8 koordinasyon sayısı ile 60 kadar enzimin kofaktörü oluşu, özellikle Na+/ K+ - ATPaz membrana bağlı iyon pompası enzimi üzerindeki ve membran porlarını şişirici etkisi ile hücre düzeyindeki iletim düzenleyici rolü sayesinde metabolizmayı genel olarak etkiler. Hücre özsuyunda bol olarak bulunması ve kolay taşınması nedeniyle osmotik basıncı düzenlediğinden de organik madde metabolizması e iletiminde rol oynar.
Tüm bu temel özellikleriyle bitkilerde tipik olarak %0.2 - 11 / k. ağ. oranında bulunan K miktarının eksilmesi ile fotosentez hızı ve ürünlerinin yapraklardan iletiminin azalması, organik asitler ve yağ asitleri sentezinin yetersiz kalması, serbest amino asit birikmesi ve protein sentezinin azalması, yumrular gibi karbohidrat deposu organlarda gelişememe, nitrat indirgenmesi ve azot metabolizmasının yavaşlaması ve protein sentezinin düşmesi ve protein azalması, hücre çeperi polisakkaritlerinin sentezinin azalması, kök sistemi gelişiminin aksaması, dona dayanıklılığın düşmesi, büyüme ve gelişme, olgunlaşma gecikmesi ile gelişmenin anormallik göstermesi gibi çok yönlü etkiler görülür.
Potasyum eksikliği önce yaşlı daha sonra genç yaprakların sararma ve kuruması, ışık enerjisi azalması halinde fotosentez hızının normalden çok daha fazla düşmesi görülür. ATP metabolizmasının aksaması nedeniyle klorofil azalmasından daha hızlı şekilde fotosentez hızı düşer. NO3 indirgenmesinin azalması sonucu amino asit sentezi azalması ve daha da hızlı olarak protein sentezi hızının düşmesi ile büyüme durur. 14C izotoplu CO2 içeren atmosferden kökler dahil bitkide metabolize edilen izotop oranı düşer, karbohidrat sentez ve iletimi düşüşü N aimilasyonunun azalmasına neden olur. Bunun sonucunda çözünür karbohidratların sağladığı osmotik basınç düşer, hücre çeperleri zayıflar.
Sonuç olarak K, N ve P kadar önemli bir besin elementidir.
Kalsiyum +2 yüküne karşılık 138 pm çapı, 130700 pm2 alanı ile iyon kanallarını büzücü etkisi olan, 6 - 8 koordinasyon sayısı ile örneğin orta lamellerde pektatlar, vaküollerde oksalat kristalleri gibi sağlam bağlı tuzlar oluşturan elementtir. Bu özelliği ile organik asitlerin ph üzerindeki etkilerini dengelediği gibi toksik etkilerini de önler.
Meristematik dokularda sürekli bölünen hücreler arasında oluşan orta lameller nedeniyle boldur. Ayrıca nitrat indirgenmesi ve, karbohidrat ve protein iletimi üzerindeki olumlu etkileri, amino asit ve ATP metabolizmasında önemli rolü olan adenil kinaz, arjinin kinaz gibi enzimler için gerekli oluşu gibi etkileri ile temel elementlerdendir.
Hayvanlarda olduğu gibi büyük oranda immobilize edilen ve ancak yaşlanma, olgunlaşma, senesans - ihtiyarlama ile katabolik metabolizma hızlandığında serbest hale geçebilen Ca++ eksikliği halinde ilk etkileri yaşlıorganlarda görülür.
Botanik
-
Bitkisel Hormonlar Nelerdir?
-
Bitkisel Hormonları Nelerdir? Auxinler - Oksin Bitki Büyüme Hormonlarının Görevleri Nelerdir?
-
Pinus cembra - İsviçre Fıstık Çamı
-
Pinus banksiana - Banks çamı
-
Pinus aristata (Higori çamı)
-
Palinoloji – Polen Bilimi Hakkında Bilgi
-
Kaktüsgiller - Cactaceae Hakkında Bilgi
-
Papatyagiller - Asteraceae Hakkında Bilgi
-
Karanfilgiller - Caryophyllaceae Hakkında Bilgi
-
Periyant Nedir ? Periant (Çiçek Örtü Yaprakları)
-
Bitki Yaprak Tipleri Ve Görevleri - Yaprak Çeşitleri
-
Bitkilerde Gövde Çeşitleri ve Gövdenin Görevleri Nelerdir ?
-
Opuntia ficusindica - "Dikenli İncir"
-
Bitkilerde Bulunan Doğal Renk Maddeleri
-
Bitki Stresi: Abiyotik ve Biyotik Faktörler